中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Epileptic Seizure Detection based on the Kernel Extreme Learning Machine

文献类型:期刊论文

作者Liu Q(刘祺)1; Zhao XG(赵晓光)1; Hou ZG(侯增广)1; Liu HG(刘洪广)2
刊名Technology and health care
出版日期2017-05-31
期号preprint页码:1-11
关键词Epileptic Eeg Multiple Features Elm Kernel Function Cholesky Decomposition
英文摘要This paper presents a pattern recognition model using multiple features and the kernel extreme learning machine (ELM), improving the accuracy of automatic epilepsy diagnosis. After simple preprocessing, temporal- and wavelet-based features are extracted from epileptic EEG signals. A combined kernel-function-based ELM approach is then proposed for feature classification. To further reduce the computation, Cholesky decomposition is introduced during the process of calculating the output weights. The experimental results show that the proposed method can achieve satisfactory accuracy with less computation time.
源URL[http://ir.ia.ac.cn/handle/173211/14830]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
作者单位1.中国科学院自动化研究所
2.中国人民公安大学
推荐引用方式
GB/T 7714
Liu Q,Zhao XG,Hou ZG,et al. Epileptic Seizure Detection based on the Kernel Extreme Learning Machine[J]. Technology and health care,2017(preprint):1-11.
APA Liu Q,Zhao XG,Hou ZG,&Liu HG.(2017).Epileptic Seizure Detection based on the Kernel Extreme Learning Machine.Technology and health care(preprint),1-11.
MLA Liu Q,et al."Epileptic Seizure Detection based on the Kernel Extreme Learning Machine".Technology and health care .preprint(2017):1-11.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。