Enhanced Hierarchical Model of Object Recognition Based on Saliency Map and Keypoint
文献类型:会议论文
作者 | Lu Yanfeng(吕彦锋)![]() |
出版日期 | 2015 |
会议日期 | 2015.4.22-4.25 |
会议地点 | Seoul, South Korea |
关键词 | Object Recognition Classification Hmax Saliency Map Keypoint |
英文摘要 |
Hierarchical Model and X (HMAX) presents an invariant feature representation, following the mechanisms
of the visual cortex. Although HMAX in object recognition is robust, scale and shift invariant, it has been shown to be sensitive to rotational deformation. To address this, we propose a novel patch selection method saliency and keypoint based patch selection (SKPS). In addition, we suggest an SKPS based HMAX model (S-HMAX). In contrast to HMAX that employs the random patch deriving a significant amount of redundant information, S-HMAX uses SKPS to extract fewer numbers of features with better distinctiveness. To show the effectiveness of S-HMAX, we apply it to object categorization on TU Darmstadt (TUD) database. Experimental results demonstrate that the performance of S-HMAX is a significant improvement on that of conventional HMAX. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/15334] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
推荐引用方式 GB/T 7714 | Lu Yanfeng,Kang Taekoo,Zhang Huazhen,et al. Enhanced Hierarchical Model of Object Recognition Based on Saliency Map and Keypoint[C]. 见:. Seoul, South Korea. 2015.4.22-4.25. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。