中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Degraded document image binarization using structural symmetry of strokes

文献类型:期刊论文

作者Jia, Fuxi; Shi, Cunzhao; He, Kun; Wang, Chunheng; Xiao, Baihua
刊名PATTERN RECOGNITION
出版日期2018-02-01
卷号74期号:2018页码:225-240
关键词Document Image Binarization Structural Symmetry Of Strokes Local Threshold Stroke Width Estimation
DOI10.1016/j.patcog.2017.09.032
文献子类Article
英文摘要This paper presents an effective approach for the local threshold binarization of degraded document images. We utilize the structural symmetric pixels (SSPs) to calculate the local threshold in neighborhood and the voting result of multiple thresholds will determine whether one pixel belongs to the foreground or not. The SSPs are defined as the pixels around strokes whose gradient magnitudes are large enough and orientations are symmetric opposite. The compensated gradient map is used to extract the SSP so as to weaken the influence of document degradations. To extract SSP candidates with large magnitudes and distinguish the faint characters and bleed-through background, we propose an adaptive global threshold selection algorithm. To further extract pixels with opposite orientations, an iterative stroke width estimation algorithm is applied to ensure the proper size of neighborhood used in orientation judgement. At last, we present a multiple threshold vote based framework to deal with some inaccurate detections of SSP. The experimental results on seven public document image binarization datasets show that our method is accurate and robust compared with many traditional and state-of-the-art document binarization approaches based on multiple evaluation measures. (C) 2017 Elsevier Ltd. All rights reserved.
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000417547800018
资助机构National Natural Science Foundation of China(61601462 ; 61531019 ; 71621002)
源URL[http://ir.ia.ac.cn/handle/173211/19604]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_影像分析与机器视觉团队
作者单位Univ Chinese Acad Sci, Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Jia, Fuxi,Shi, Cunzhao,He, Kun,et al. Degraded document image binarization using structural symmetry of strokes[J]. PATTERN RECOGNITION,2018,74(2018):225-240.
APA Jia, Fuxi,Shi, Cunzhao,He, Kun,Wang, Chunheng,&Xiao, Baihua.(2018).Degraded document image binarization using structural symmetry of strokes.PATTERN RECOGNITION,74(2018),225-240.
MLA Jia, Fuxi,et al."Degraded document image binarization using structural symmetry of strokes".PATTERN RECOGNITION 74.2018(2018):225-240.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。