中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Master general parking skill via deep learning

文献类型:会议论文

作者Yiun Lin1,3; Li Li2; Xingyuan Dai1,3; Zheng Nanning4; Wang Fei-Yue1
出版日期2017
会议日期2017
会议地点Los Angeles, CA, USA
关键词智能汽车 轨迹规划
DOI10.1109/IVS.2017.7995836
英文摘要

Parking is one basic function of autonomous vehicles. However, parking still remains difficult to be implemented, since it requires to generate a relatively long-term series of actions to reach a certain objective under complicated constraints. One recently proposed method used deep neural networks(DNN) to learn the relationship between the actual parking trajectories and the corresponding steering actions, so as to find the best parking trajectory via direct recalling. However, this method can only handle a special vehicle whose dynamic parameters are well known. In this paper, we use transfer learning technique to further extend this direct trajectory planning method and master general parking skills. We aim to mimic how human drivers make parking by using a specially designed deep neural network. The first few layers of this DNN contain the general parking trajectory planning knowledge for all kinds of vehicles; while the last few layers of this DNN can be quickly tuned to adapt various kinds of vehicles. Numerical tests show that, combining transfer learning and direct trajectory planning solution, our new approach enables automated vehicles to convey the knowledge of trajectory planning from one vehicle to another with a few try-and-tests.

会议录IEEE Intelligent Vehicles Symposium, Proceedings
学科主题智能汽车
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/20242]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
自动化研究所_复杂系统管理与控制国家重点实验室
通讯作者Li Li
作者单位1.中国科学院自动化研究所 先进控制与自动化团队
2.清华大学 自动化系
3.中国科学院大学
4.西安交通大学
推荐引用方式
GB/T 7714
Yiun Lin,Li Li,Xingyuan Dai,et al. Master general parking skill via deep learning[C]. 见:. Los Angeles, CA, USA. 2017.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。