中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Levenberg-Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of A Safety Critical Cyber-Physical System

文献类型:期刊论文

作者C. Lv; Yang Xing; Junzhi Zhang; Xiaoxiang Na; Yutong Li; Teng Liu; Dongpu Cao; Fei-Yue Wang
刊名IEEE Transactions on Industrial Informatics
出版日期2017
卷号PP期号:99页码:1-11
关键词— Cyber-physical System Safety Critical System Artificial Neural Networks Lmbp Brake Pressure Estimation Electric Vehicle.
英文摘要As an important safety critical cyber-physical system (CPS), the braking system is essential to the safe operation of the electric vehicle. Accurate estimation of the brake pressure is of great importance for automotive CPS design and control. In this paper, a novel probabilistic estimation method of brake pressure is developed for electrified vehicles based on multilayer Artificial Neural Networks (ANN) with Levenberg-Marquardt Backpropagation (LMBP) training algorithm. Firstly, the high-level architecture of the proposed multilayer ANN for brake pressure estimation is illustrated. Then, the standard backpropagation (BP) algorithm used for training of the feed-forward neural network (FFNN) is introduced. Based on the basic concept of backpropagation, a more efficient training algorithm of LMBP method is proposed. Next, real vehicle testing is carried out on a chassis dynamometer under standard driving cycles. Experimental data of the vehicle and the powertrain systems are collected, and feature vectors for FFNN training collection are selected. Finally, the developed multilayer ANN is trained using the measured vehicle data, and the performance of the brake pressure estimation is evaluated and compared with other available learning methods. Experimental results validate the feasibility and accuracy of the proposed ANN-based method for braking pressure estimation under real deceleration scenarios.
源URL[http://ir.ia.ac.cn/handle/173211/20267]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
推荐引用方式
GB/T 7714
C. Lv,Yang Xing,Junzhi Zhang,et al. Levenberg-Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of A Safety Critical Cyber-Physical System[J]. IEEE Transactions on Industrial Informatics,2017,PP(99):1-11.
APA C. Lv.,Yang Xing.,Junzhi Zhang.,Xiaoxiang Na.,Yutong Li.,...&Fei-Yue Wang.(2017).Levenberg-Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of A Safety Critical Cyber-Physical System.IEEE Transactions on Industrial Informatics,PP(99),1-11.
MLA C. Lv,et al."Levenberg-Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of A Safety Critical Cyber-Physical System".IEEE Transactions on Industrial Informatics PP.99(2017):1-11.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。