中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Epileptic seizure detection based on the kernel extreme learning machine

文献类型:期刊论文

作者Liu, Qi1; Zhao, Xiaoguang1; Hou, Zengguang1; Liu, Hongguang2
刊名TECHNOLOGY AND HEALTH CARE
出版日期2017
卷号25页码:S399-S409
关键词Epileptic Eeg Multiple Features Elm Kernel Function Cholesky Decomposition
DOI10.3233/THC-171343
文献子类Article
英文摘要This paper presents a pattern recognition model using multiple features and the kernel extreme learning machine (ELM), improving the accuracy of automatic epilepsy diagnosis. After simple preprocessing, temporal-and wavelet-based features are extracted from epileptic EEG signals. A combined kernel-function-based ELM approach is then proposed for feature classification. To further reduce the computation, Cholesky decomposition is introduced during the process of calculating the output weights. The experimental results show that the proposed method can achieve satisfactory accuracy with less computation time.
WOS关键词SUPPORT VECTOR MACHINE ; FEATURE-EXTRACTION ; EEG SIGNALS ; ENTROPY ; CLASSIFICATION ; COEFFICIENTS
WOS研究方向Health Care Sciences & Services ; Engineering
语种英语
WOS记录号WOS:000406157200044
源URL[http://ir.ia.ac.cn/handle/173211/20703]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
作者单位1.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing, Peoples R China
2.Chinese Peoples Publ Secur Univ, Inst Crime, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Qi,Zhao, Xiaoguang,Hou, Zengguang,et al. Epileptic seizure detection based on the kernel extreme learning machine[J]. TECHNOLOGY AND HEALTH CARE,2017,25:S399-S409.
APA Liu, Qi,Zhao, Xiaoguang,Hou, Zengguang,&Liu, Hongguang.(2017).Epileptic seizure detection based on the kernel extreme learning machine.TECHNOLOGY AND HEALTH CARE,25,S399-S409.
MLA Liu, Qi,et al."Epileptic seizure detection based on the kernel extreme learning machine".TECHNOLOGY AND HEALTH CARE 25(2017):S399-S409.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。