中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
CRF based text detection for natural scene images using convolutional

文献类型:期刊论文

作者Wang YN(王燕娜)1,2; Shi,Cunzhao1; Baihua Xiao1; Chunheng Wang1; Chengzuo Qi1,2
刊名Neurocomputing
出版日期2018
期号295页码:46-58
关键词Scene Text Detection Mser Cnn Crf Context Information Shape-specific Classifiers
英文摘要This paper presents a novel scene text detection method based on conditional random field (CRF) framework. We estimate the confidence of Maximally Stable Extremal Region (MSER) being text by leveraging
convolutional neural network (CNN) to define the unary cost item. In addition, we establish the neighboring interactions for MSERs using four different features including color, shape, stroke and spatial features
to define the pairwise cost item. Considering the special layout of texts appearing in natural scene images, we employ context information to recover missing text MSER candidates. Furthermore, text MSERs
are grouped into candidate text lines which are verified with shape-specific classifiers by integrating gray
and binary features. Experimental results on four public benchmark datasets show that the proposed
method achieves the comparable performance.


源URL[http://ir.ia.ac.cn/handle/173211/21036]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_影像分析与机器视觉团队
作者单位1.The State Key Laboratory of Management and Control for Complex Systems,Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Wang YN,Shi,Cunzhao,Baihua Xiao,et al. CRF based text detection for natural scene images using convolutional[J]. Neurocomputing,2018(295):46-58.
APA Wang YN,Shi,Cunzhao,Baihua Xiao,Chunheng Wang,&Chengzuo Qi.(2018).CRF based text detection for natural scene images using convolutional.Neurocomputing(295),46-58.
MLA Wang YN,et al."CRF based text detection for natural scene images using convolutional".Neurocomputing .295(2018):46-58.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。