(MCD)-C-4: A Robust Change Detection Method for Intelligent Visual Surveillance
文献类型:期刊论文
作者 | Wang, Kunfeng1,2![]() ![]() ![]() |
刊名 | IEEE ACCESS
![]() |
出版日期 | 2018 |
卷号 | 6页码:15505-15520 |
关键词 | Change Detection Multimodal Background Multi-view Learning Conditional Independence Markov Random Field |
DOI | 10.1109/ACCESS.2018.2812880 |
文献子类 | Article |
英文摘要 | In this paper, we propose a robust change detection method for intelligent visual surveillance. This method, named (MCD)-C-4, includes three major steps. First, a sample-based background model that integrates color and texture cues is built and updated over time. Second, multiple heterogeneous features (including brightness variation, chromaticity variation, and texture variation) are extracted by comparing the input frame with the background model, and a multi-view learning strategy is designed to online estimate the probability distributions for both foreground and background. The three features are approximately conditionally independent, making multi-view learning feasible. Pixel-wise foreground posteriors are then estimated with Bayes rule. Finally, the Markov random field (MRF) optimization and heuristic postprocessing techniques are used sequentially to improve accuracy. In particular, a two-layer MRF model is constructed to represent pixel-based and superpixel-based contextual constraints compactly. Experimental results on the CDnet dataset indicate that (MCD)-C-4 is robust under complex environments and ranks among the top methods. |
WOS关键词 | MOVING OBJECT DETECTION ; BACKGROUND SUBTRACTION ; SEGMENTATION ; TRACKING ; VIDEOS ; MODEL ; EDGE |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000429256000001 |
资助机构 | National Natural Science Foundation of China(61533019 ; 71232006 ; 91720000) |
源URL | [http://ir.ia.ac.cn/handle/173211/22003] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 2.Qingdao Acad Intelligent Ind, Innovat Ctr Parallel Vis, Qingdao 266000, Peoples R China 3.Natl Univ Def Technol, Res Ctr Computat Expt & Parallel Sys, Changsha 410073, Hunan, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Kunfeng,Gou, Chao,Wang, Fei-Yue. (MCD)-C-4: A Robust Change Detection Method for Intelligent Visual Surveillance[J]. IEEE ACCESS,2018,6:15505-15520. |
APA | Wang, Kunfeng,Gou, Chao,&Wang, Fei-Yue.(2018).(MCD)-C-4: A Robust Change Detection Method for Intelligent Visual Surveillance.IEEE ACCESS,6,15505-15520. |
MLA | Wang, Kunfeng,et al."(MCD)-C-4: A Robust Change Detection Method for Intelligent Visual Surveillance".IEEE ACCESS 6(2018):15505-15520. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。