中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Solving integral equations with logarithmic kernel by using periodic quasi-wavelet

文献类型:期刊论文

作者Chen, HL; Peng, SL,
刊名Journal of Computational Mathematics
出版日期2000
卷号18(5)期号:5页码:487-512 (SCI)
关键词Periodic / quasi-wavelet / integral / equation / multiscale
英文摘要In solving integral equations with logarithmic kernel which arises from the boundary integral equation reformulation of some boundary value problems for the two dimensional Helmholtz equation, we combine the Galerkin method with Beylkin's ([2]) approach, series of dense and nonsymmetric matrices may appear if we use traditional method. By appealing the so-called periodic quasi-wavelet (PQW in abbr.) ([5]), some of these matrices become diagonal, therefore we can find a algorithm with only O(K(m)2) arithmetic operations where m is the highest level. The Galerkin approximation has a polynomial rate of convergence.
源URL[http://ir.ia.ac.cn/handle/173211/12909]  
专题自动化研究所_智能制造技术与系统研究中心_多维数据分析团队
通讯作者Chen, HL
推荐引用方式
GB/T 7714
Chen, HL,Peng, SL,. Solving integral equations with logarithmic kernel by using periodic quasi-wavelet[J]. Journal of Computational Mathematics,2000,18(5)(5):487-512 (SCI).
APA Chen, HL,&Peng, SL,.(2000).Solving integral equations with logarithmic kernel by using periodic quasi-wavelet.Journal of Computational Mathematics,18(5)(5),487-512 (SCI).
MLA Chen, HL,et al."Solving integral equations with logarithmic kernel by using periodic quasi-wavelet".Journal of Computational Mathematics 18(5).5(2000):487-512 (SCI).

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。