中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Mixed Iterative Adaptive Dynamic Programming for Optimal Battery Energy Control in Smart Residential Microgrids

文献类型:期刊论文

作者Wei, Qinglai1,2; Liu, Derong3; Lewis, Frank L.4; Liu, Yu5; Zhang, Jie1,6
刊名IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
出版日期2017-05-01
卷号64期号:5页码:4110-4120
关键词Adaptive Critic Designs Adaptive Dynamic Programming (Adp) Approximate Dynamic Programming Mixed Iteration Optimal Control Policy Iteration Smart Grid Value Iteration
DOI10.1109/TIE.2017.2650872
文献子类Article
英文摘要In this paper, a novel mixed iterative adaptive dynamic programming (ADP) algorithm is developed to solve the optimal battery energy management and control problem in smart residential microgrid systems. Based on the data of the load and electricity rate, two iterations are constructed, which are P-iteration and V-iteration, respectively. The V-iteration is implemented based on value iteration, which aims to obtain the iterative control law sequence in each period. The P-iteration is implemented based on policy iteration, which updates the iterative value function according to the iterative control law sequence. Properties of the developed mixed iterative ADP algorithm are analyzed. It is shown that the iterative value function is monotonically nonincreasing and converges to the solution of the Bellman equation. In each iteration, it is proven that the performance index function is finite under the iterative control law sequence. Finally, numerical results and comparisons are given to illustrate the performance of the developed algorithm.
WOS关键词TIME NONLINEAR-SYSTEMS ; OPTIMAL TRACKING CONTROL ; NEURAL-NETWORK ; LEARNING ALGORITHM ; FEEDBACK-CONTROL ; STORAGE SYSTEM ; CONTROL SCHEME ; REINFORCEMENT ; MANAGEMENT ; DESIGN
WOS研究方向Automation & Control Systems ; Engineering ; Instruments & Instrumentation
语种英语
WOS记录号WOS:000399674000065
资助机构National Natural Science Foundation of China(61233001 ; Open Research Project from SKLMCCS(20150104) ; 61273140 ; 61374105 ; 61379099 ; 61304079 ; 61673054 ; 61533017 ; 71402178 ; 61533019 ; 71232006 ; U1501251)
源URL[http://ir.ia.ac.cn/handle/173211/13637]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_智能化团队
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
4.Univ Texas Arlington, UTA Res Inst, Arlington, TX 76118 USA
5.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
6.Qingdao Acad Intelligent Ind, Qingdao 266000, Shandong, Peoples R China
推荐引用方式
GB/T 7714
Wei, Qinglai,Liu, Derong,Lewis, Frank L.,et al. Mixed Iterative Adaptive Dynamic Programming for Optimal Battery Energy Control in Smart Residential Microgrids[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2017,64(5):4110-4120.
APA Wei, Qinglai,Liu, Derong,Lewis, Frank L.,Liu, Yu,&Zhang, Jie.(2017).Mixed Iterative Adaptive Dynamic Programming for Optimal Battery Energy Control in Smart Residential Microgrids.IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,64(5),4110-4120.
MLA Wei, Qinglai,et al."Mixed Iterative Adaptive Dynamic Programming for Optimal Battery Energy Control in Smart Residential Microgrids".IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 64.5(2017):4110-4120.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。