中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
computational intelligence for changing environments

文献类型:期刊论文

作者Amir,Hussain1; Dacheng,Tao2; Jonathan,Wu3; Zhao,Dongbin(赵冬斌)4
刊名IEEE Computational Intelligence Magazine
出版日期2015-10-13
卷号11期号:10(4)页码:10-11
关键词Behavioral Science Guest Editorial Computational Intelligence
DOI10.1109/MCI.2015.2472119
英文摘要The articles in this special section focus on the growing interest in biologically inspired learning (BIL), which refers to a wide range of learning techniques, motivated by biology, that try to mimic specific biological functions or behaviors.
源URL[http://ir.ia.ac.cn/handle/173211/19322]  
专题复杂系统管理与控制国家重点实验室_深度强化学习
作者单位1.University of Stirling, Scotland, UK
2.University of Technology, Sydney, AUSTRALIA
3.University of Windsor, Ontario, CANADA
4.Chinese Academy of Sciences, Beijing, CHINA
推荐引用方式
GB/T 7714
Amir,Hussain,Dacheng,Tao,Jonathan,Wu,et al. computational intelligence for changing environments[J]. IEEE Computational Intelligence Magazine,2015,11(10(4)):10-11.
APA Amir,Hussain,Dacheng,Tao,Jonathan,Wu,&Zhao,Dongbin.(2015).computational intelligence for changing environments.IEEE Computational Intelligence Magazine,11(10(4)),10-11.
MLA Amir,Hussain,et al."computational intelligence for changing environments".IEEE Computational Intelligence Magazine 11.10(4)(2015):10-11.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。