Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer
文献类型:期刊论文
作者 | Zhang, Liwen1,2![]() ![]() ![]() ![]() ![]() |
刊名 | TRANSLATIONAL ONCOLOGY
![]() |
出版日期 | 2018-02-01 |
卷号 | 11期号:1页码:94-101 |
关键词 | Radiomics |
DOI | 10.1016/j.tranon.2017.10.012 |
文献子类 | Article |
英文摘要 | OBJECTIVES: To predict epidermal growth factor receptor (EGFR) mutation status using quantitative radiomic biomarkers and representative clinical variables. METHODS: The study included 180 patients diagnosed as of non-small cell lung cancer (NSCLC) with their pre-therapy computed tomography (CT) scans. Using a radiomic method, 485 features that reflect the heterogeneity and phenotype of tumors were extracted. Afterwards, these radiomic features were used for predicting epidermal growth factor receptor (EGFR) mutation status by a least absolute shrinkage and selection operator (LASSO) based on multivariable logistic regression. As a result, we found that radiomic features have prognostic ability in EGFR mutation status prediction. In addition, we used radiomic nomogram and calibration curve to test the performance of the model. RESULTS: Multivariate analysis revealed that the radiomic features had the potential to build a prediction model for EGFR mutation. The area under the receiver operating characteristic curve (AUC) for the training cohort was 0.8618, and the AUC for the validation cohort was 0.8725, which were superior to prediction model that used clinical variables alone. CONCLUSION: Radiomic features are better predictors of EGFR mutation status than conventional semantic CT image features or clinical variables to help doctors to decide who need EGFR tyrosine kinase inhibitor (TKI) treatment. |
WOS关键词 | PREDOMINANT HISTOLOGIC SUBTYPE ; EGFR MUTATIONS ; ADENOCARCINOMA CLASSIFICATION ; 1ST-LINE TREATMENT ; ASIAN PATIENTS ; OPEN-LABEL ; GEFITINIB ; AFATINIB ; FEATURES ; TRIAL |
WOS研究方向 | Oncology |
语种 | 英语 |
WOS记录号 | WOS:000423454900012 |
资助机构 | National Key R&D Program of China(2017YFC1308700 ; National Natural Science Foundation of China(81227901 ; Natural Science Foundation of Heilongjiang Province(F201311 ; special program for science and technology development from the Ministry of science and technology, China(2016CZYD0001) ; Science and Technology Service Network Initiative of the Chinese Academy of Sciences(KFJ-SW-STS-160) ; Instrument Developing Project(YZ201502) ; Beijing Municipal Science and Technology Commission(Z161100002616022) ; Key Program from the Department of Science and Technology, Sichuan Province, China(2017SZ0052) ; Youth Innovation Promotion Association CAS ; 2017YFA0205200 ; 81771924 ; 12541105) ; 2017YFC1308701 ; 81671851 ; 2017YFC1309100) ; 81527805 ; 61231004 ; 61672197 ; 81501616) |
源URL | [http://ir.ia.ac.cn/handle/173211/20307] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
作者单位 | 1.Harbin Univ Sci & Technol, Sch Automat, Harbin 150080, Heilongjiang, Peoples R China 2.Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China 3.Sichuan Univ, West China Hosp, Dept Resp & Crit Care Med, Chengdu 610041, Sichuan, Peoples R China 4.China Med Univ, Sch Med Informat, Shenyang 110122, Liaoning, Peoples R China 5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Liwen,Chen, Bojiang,Liu, Xia,et al. Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer[J]. TRANSLATIONAL ONCOLOGY,2018,11(1):94-101. |
APA | Zhang, Liwen.,Chen, Bojiang.,Liu, Xia.,Song, Jiangdian.,Fang, Mengjie.,...&Tian, Jie.(2018).Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer.TRANSLATIONAL ONCOLOGY,11(1),94-101. |
MLA | Zhang, Liwen,et al."Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer".TRANSLATIONAL ONCOLOGY 11.1(2018):94-101. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。