Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma
文献类型:期刊论文
作者 | Zhang, Bin1,2![]() ![]() ![]() |
刊名 | CANCER LETTERS
![]() |
出版日期 | 2017-09-10 |
卷号 | 403页码:21-27 |
关键词 | Radiomics Imaging Nasopharyngeal Carcinoma Machine-learning |
DOI | 10.1016/j.canlet.2017.06.004 |
文献子类 | Article |
英文摘要 | We aimed to identify optimal machine-learning methods for radiomics-based prediction of local failure and distant failure in advanced nasopharyngeal carcinoma (NPC). We enrolled 110 patients with advanced NPC. A total of 970 radiomic features were extracted from MRI images for each patient. Six feature selection methods and nine classification methods were evaluated in terms of their performance. We applied the 10 fold cross-validation as the criterion for feature selection and classification. We repeated each combination for 50 times to obtain the mean area under the curve (AUC) and test error. We observed that the combination methods Random Forest (RF) + RF (AUC, 0.8464 +/- 0.0069; test error, 03135 +/- 0.0088) had the highest prognostic performance, followed by RF + Adaptive Boosting (AdaBoost) (AUC, 0.8204 +/- 0.0095; test error, 0.3384 +/- 0.0097), and Sure Independence Screening (SIS) + Linear Support Vector Machines (LSVM) (AUC, 0.7883 +/- 0.0096; test error, 0.3985 +/- 0.0100). Our radiomics study identified optimal machine-learning methods for the radiomics-based prediction of local failure and distant failure in advanced NPC, which could enhance the applications of radiomics in precision oncology and clinical practice. (C) 2017 Elsevier B.V. All rights reserved. |
WOS关键词 | TUMOR PHENOTYPE ; LUNG-CANCER ; FEATURES ; HETEROGENEITY ; IMAGES ; MRI ; RECONSTRUCTION ; CHALLENGES ; PET |
WOS研究方向 | Oncology |
语种 | 英语 |
WOS记录号 | WOS:000407662300003 |
资助机构 | National Scientific Foundation of China(81571664) ; Science and Technology Planning Project of Guangdong Province(2014A020212244 ; Commission on Innovation and Technology of Guangdong Province(201605110912158) ; Clinical Research Foundation of Guangdong General Hospital(2015zh04) ; 2016A020216020) |
源URL | [http://ir.ia.ac.cn/handle/173211/20725] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
作者单位 | 1.Jinan Univ, Affiliated Hosp 1, Med Imaging Ctr, Guangzhou, Guangdong, Peoples R China 2.Jinan Univ, Inst Mol & Funct Imaging, Guangzhou, Guangdong, Peoples R China 3.City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China 4.First Peoples Hosp Shunde, Dept Radiol, Foshan, Guangdong, Peoples R China 5.Chinese Acad Sci, Key Lab Mol Imaging, Beijing, Peoples R China 6.Guangdong Acad Med Sci, Guangdong Gen Hosp, Dept Radiol, Guangzhou, Guangdong, Peoples R China 7.Shantou Univ, Med Coll, Shantou, Guangdong, Peoples R China 8.South China Univ Technol, Sch Med, Guangzhou, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Bin,He, Xin,Ouyang, Fusheng,et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma[J]. CANCER LETTERS,2017,403:21-27. |
APA | Zhang, Bin.,He, Xin.,Ouyang, Fusheng.,Gu, Dongsheng.,Dong, Yuhao.,...&Zhang, Shuixing.(2017).Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.CANCER LETTERS,403,21-27. |
MLA | Zhang, Bin,et al."Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma".CANCER LETTERS 403(2017):21-27. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。