中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Research on Autonomous Maneuvering Decision of UCAV Based on Deep Reinforcement Learning

文献类型:会议论文

作者Zhang, Yesheng1,2; Zu, Wei1; Gao, Yang1; Chang, Hongxing1
出版日期2018-06
会议日期June 9-11, 2018
会议地点Shenyang, China
关键词Air Combat Autonomous Maneuvering Decision Deep Reinforcement Learning
卷号1
页码230-235
英文摘要
In order to improve the intelligent level of UCAV in one-to-one air combat, an autonomous maneuvering decision algorithm based on deep reinforcement learning is proposed. UCAV learns strategies by sensing the environment, performing maneuvering actions, and getting feedback. In this way, we can avoid the limitations of existing theories and human operations. Firstly an environment is modeled to simulate the real-time situation of air combat. Then a situation assessment method based on Energy-Maneuverability theory is utilized to design the reward functions. Finally model based on deep reinforcement learning is created for UCAV to learn strategies to gain the advantage for the opponent.
资助机构东北大学
会议录CCDC2018
会议录出版者IEEE Industrial Electronics (IE) Chapter, Singapore
学科主题Autonomous Control
会议录出版地Singapore
语种英语
URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/20920]  
专题自动化研究所_综合信息系统研究中心
通讯作者Zhang, Yesheng
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Zhang, Yesheng,Zu, Wei,Gao, Yang,et al. Research on Autonomous Maneuvering Decision of UCAV Based on Deep Reinforcement Learning[C]. 见:. Shenyang, China. June 9-11, 2018.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。