Research on Autonomous Maneuvering Decision of UCAV Based on Deep Reinforcement Learning
文献类型:会议论文
作者 | Zhang, Yesheng1,2![]() ![]() ![]() ![]() |
出版日期 | 2018-06 |
会议日期 | June 9-11, 2018 |
会议地点 | Shenyang, China |
关键词 | Air Combat Autonomous Maneuvering Decision Deep Reinforcement Learning |
卷号 | 1 |
页码 | 230-235 |
英文摘要 |
In order to improve the intelligent level of UCAV in one-to-one air combat, an autonomous maneuvering decision algorithm based on deep reinforcement learning is proposed. UCAV learns strategies by sensing the environment, performing maneuvering actions, and getting feedback. In this way, we can avoid the limitations of existing theories and human operations. Firstly an environment is modeled to simulate the real-time situation of air combat. Then a situation assessment method based on Energy-Maneuverability theory is utilized to design the reward functions. Finally model based on deep reinforcement learning is created for UCAV to learn strategies to gain the advantage for the opponent. |
资助机构 | 东北大学 |
会议录 | CCDC2018
![]() |
会议录出版者 | IEEE Industrial Electronics (IE) Chapter, Singapore |
学科主题 | Autonomous Control |
会议录出版地 | Singapore |
语种 | 英语 |
URL标识 | 查看原文 |
源URL | [http://ir.ia.ac.cn/handle/173211/20920] ![]() |
专题 | 自动化研究所_综合信息系统研究中心 |
通讯作者 | Zhang, Yesheng |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Zhang, Yesheng,Zu, Wei,Gao, Yang,et al. Research on Autonomous Maneuvering Decision of UCAV Based on Deep Reinforcement Learning[C]. 见:. Shenyang, China. June 9-11, 2018. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。