Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation
文献类型:期刊论文
作者 | Xie, Jiaheng1; Liu, Xiao2; Zeng, Daniel Dajun1![]() |
刊名 | JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION
![]() |
出版日期 | 2018 |
卷号 | 25期号:1页码:72-80 |
关键词 | E-cigarette Adverse Event Bi-lstm Recurrent Neural Network Word Embedding Deep Neural Network |
DOI | 10.1093/jamia/ocx045 |
文献子类 | Article |
英文摘要 | Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. |
WOS关键词 | NAMED ENTITY RECOGNITION ; ELECTRONIC CIGARETTES ; METAMAP ; IMPACT ; SMOKING ; TEXT |
WOS研究方向 | Computer Science ; Health Care Sciences & Services ; Information Science & Library Science ; Medical Informatics |
语种 | 英语 |
WOS记录号 | WOS:000419605800012 |
资助机构 | US National Institutes of Health(1R01DA037378-01) ; National Science Foundation(IIS-1553109 ; IIS-1552860) |
源URL | [http://ir.ia.ac.cn/handle/173211/21935] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心 |
作者单位 | 1.Univ Arizona, Dept Management Informat Syst, Tucson, AZ 85721 USA 2.Univ Utah, Dept Operat & Informat Syst, Salt Lake City, UT USA 3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Xie, Jiaheng,Liu, Xiao,Zeng, Daniel Dajun. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation[J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION,2018,25(1):72-80. |
APA | Xie, Jiaheng,Liu, Xiao,&Zeng, Daniel Dajun.(2018).Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation.JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION,25(1),72-80. |
MLA | Xie, Jiaheng,et al."Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation".JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION 25.1(2018):72-80. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。