中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation

文献类型:期刊论文

作者Xie, Jiaheng1; Liu, Xiao2; Zeng, Daniel Dajun1
刊名JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION
出版日期2018
卷号25期号:1页码:72-80
关键词E-cigarette Adverse Event Bi-lstm Recurrent Neural Network Word Embedding Deep Neural Network
DOI10.1093/jamia/ocx045
文献子类Article
英文摘要Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media.
WOS关键词NAMED ENTITY RECOGNITION ; ELECTRONIC CIGARETTES ; METAMAP ; IMPACT ; SMOKING ; TEXT
WOS研究方向Computer Science ; Health Care Sciences & Services ; Information Science & Library Science ; Medical Informatics
语种英语
WOS记录号WOS:000419605800012
资助机构US National Institutes of Health(1R01DA037378-01) ; National Science Foundation(IIS-1553109 ; IIS-1552860)
源URL[http://ir.ia.ac.cn/handle/173211/21935]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心
作者单位1.Univ Arizona, Dept Management Informat Syst, Tucson, AZ 85721 USA
2.Univ Utah, Dept Operat & Informat Syst, Salt Lake City, UT USA
3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Xie, Jiaheng,Liu, Xiao,Zeng, Daniel Dajun. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation[J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION,2018,25(1):72-80.
APA Xie, Jiaheng,Liu, Xiao,&Zeng, Daniel Dajun.(2018).Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation.JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION,25(1),72-80.
MLA Xie, Jiaheng,et al."Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation".JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION 25.1(2018):72-80.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。