中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Invariant representation for blur and down-sampling transformations

文献类型:会议论文

作者Gu HX(谷鹄翔)1; Leibo Joel2; Anselmi Fabio2; Chunhong Pan1; Tomaso Poggio2
出版日期2016
会议日期2016.09.25-2016.09.28
会议地点Phonex, Arizona, USA
关键词Invariance Representation Down-samppling
英文摘要Invariant representations of images can significantly reduce
the sample complexity of a classifier performing object identification
or categorization as shown in a recent analysis of
invariant representations for object recognition. In the case
of geometric transformations of images the theory [1] shows
how invariant signatures can be learned in a biologically plausible
way from unsupervised observations of the transformations
of a set of randomly chosen template images. Here we
extend the theory to non-geometric transformations such as
blur and down-sampling. The proposed algorithm achieve an
invariant representation via two simple biologically-plausible
steps: 1. compute normalized dot products of the input with
the stored transformations of each template, and 2. for each
template compute the statistics of the resulting set of values
such as the histogram or moments. The performance of our
system on challenging blurred and low resolution face matching
tasks exceeds the previous state-of-the-art by a large margin
which grows with increasing image corruption.
会议录2016 IEEE International Conference on Image Processing, 10.1109/ICIP.2016.7533029
源URL[http://ir.ia.ac.cn/handle/173211/12034]  
专题自动化研究所_空天信息研究中心
通讯作者Tomaso Poggio
作者单位1.CASIA
2.MIT
推荐引用方式
GB/T 7714
Gu HX,Leibo Joel,Anselmi Fabio,et al. Invariant representation for blur and down-sampling transformations[C]. 见:. Phonex, Arizona, USA. 2016.09.25-2016.09.28.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。