中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Removing Turbulence Effect via Hybrid Total Variation and Deformation-Guided Kernel Regression

文献类型:期刊论文

作者Xie, Yuan1; Zhang, Wensheng1; Tao, Dacheng2; Hu, Wenrui1; Qu, Yanyun3; Wang, Hanzi3; Yuan Xie
刊名IEEE TRANSACTIONS ON IMAGE PROCESSING
出版日期2016-10-01
卷号25期号:10页码:4943-4958
关键词Image Restoration Atmospheric Turbulence Total Variation Deformation-guided Kernel
DOI10.1109/TIP.2016.2598638
文献子类Article
英文摘要It remains a challenge to simultaneously remove geometric distortion and space-time-varying blur in frames captured through a turbulent atmospheric medium. To solve, or at least reduce these effects, we propose a new scheme to recover a latent image from observed frames by integrating a new hybrid total variation model and deformation-guided spatial-temporal kernel regression. The proposed scheme first constructs a high-quality reference image from the observed frames using low-rank decomposition. Then, to generate an improved registered sequence, the reference image is iteratively optimized using a variational model containing the combined regularization of local and non-local total variations. The proposed optimization algorithm efficiently solves this model with convergence guarantee. Next, to reduce blur variation, deformation-guided spatial-temporal kernel regression is carried out to fuse the registered sequence into one image by introducing the concept of the near-stationary patch. Applying a blind deconvolution algorithm to the fused image produces the final output. Extensive experimental testing shows, both qualitatively and quantitatively, that the proposed method can effectively alleviate distortion, and blur and recover details of the original scene compared to the state-of-the-art methods.
WOS关键词ATMOSPHERIC-TURBULENCE ; INFORMATION FUSION ; IMAGE ; RECONSTRUCTION ; REGULARIZATION ; DECONVOLUTION ; REGISTRATION ; RESTORATION ; ALGORITHMS ; RECOVERY
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000390221100022
资助机构Hong Kong Scholar Program ; National Natural Science Foundation of China(61402480 ; Australian Research Council(DP-120103730 ; 61432008 ; FT-130101457) ; 61472423 ; 61502495 ; 41401383 ; 61373077)
源URL[http://ir.ia.ac.cn/handle/173211/12258]  
专题精密感知与控制研究中心_人工智能与机器学习
通讯作者Yuan Xie
作者单位1.Chinese Acad Sci, Res Ctr Precis Sensing & Control, Inst Automat, Beijing 100190, Peoples R China
2.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
3.Xiamen Univ, Sch Informat Sci & Technol, Xiamen 361005, Peoples R China
推荐引用方式
GB/T 7714
Xie, Yuan,Zhang, Wensheng,Tao, Dacheng,et al. Removing Turbulence Effect via Hybrid Total Variation and Deformation-Guided Kernel Regression[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2016,25(10):4943-4958.
APA Xie, Yuan.,Zhang, Wensheng.,Tao, Dacheng.,Hu, Wenrui.,Qu, Yanyun.,...&Yuan Xie.(2016).Removing Turbulence Effect via Hybrid Total Variation and Deformation-Guided Kernel Regression.IEEE TRANSACTIONS ON IMAGE PROCESSING,25(10),4943-4958.
MLA Xie, Yuan,et al."Removing Turbulence Effect via Hybrid Total Variation and Deformation-Guided Kernel Regression".IEEE TRANSACTIONS ON IMAGE PROCESSING 25.10(2016):4943-4958.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。