中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction

文献类型:期刊论文

作者Xie, Yuan1,2; Gu, Shuhang3; Liu, Yan3; Zuo, Wangmeng4; Zhang, Wensheng2; Zhang, Lei3; Yuan Xie
刊名IEEE TRANSACTIONS ON IMAGE PROCESSING
出版日期2016-10-01
卷号25期号:10页码:4842-4857
关键词Low Rank Weighted Schatten P-norm Low-level Vision
DOI10.1109/TIP.2016.2599290
文献子类Article
英文摘要Low rank matrix approximation (LRMA), which aims to recover the underlying low rank matrix from its degraded observation, has a wide range of applications in computer vision. The latest LRMA methods resort to using the nuclear norm minimization (NNM) as a convex relaxation of the nonconvex rank minimization. However, NNM tends to over-shrink the rank components and treats the different rank components equally, limiting its flexibility in practical applications. We propose a more flexible model, namely, the weighted Schatten p-norm minimization (WSNM), to generalize the NNM to the Schatten p-norm minimization with weights assigned to different singular values. The proposed WSNM not only gives better approximation to the original low-rank assumption, but also considers the importance of different rank components. We analyze the solution of WSNM and prove that, under certain weights permutation, WSNM can be equivalently transformed into independent non-convex l(p)-norm subproblems, whose global optimum can be efficiently solved by generalized iterated shrinkage algorithm. We apply WSNM to typical low-level vision problems, e.g., image denoising and background subtraction. Extensive experimental results show, both qualitatively and quantitatively, that the proposed WSNM can more effectively remove noise, and model the complex and dynamic scenes compared with state-of-the-art methods.
WOS关键词RANK MINIMIZATION ; MATRIX COMPLETION ; MISSING DATA ; APPROXIMATION ; FACTORIZATION ; RESTORATION ; ALGORITHMS ; SIGNALS
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000382677700008
资助机构Hong Kong Scholars Program ; HK RGC GRF(PolyU 5313/13E) ; National Natural Science Foundation of China(61402480 ; 61432008 ; 61472423 ; 61502495 ; 41401383 ; 61373077)
源URL[http://ir.ia.ac.cn/handle/173211/12447]  
专题精密感知与控制研究中心_人工智能与机器学习
通讯作者Yuan Xie
作者单位1.Hong Kong Polytech Univ, Dept Comp, Visual Comp Lab, Hong Kong, Hong Kong, Peoples R China
2.Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China
3.Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
4.Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
推荐引用方式
GB/T 7714
Xie, Yuan,Gu, Shuhang,Liu, Yan,et al. Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2016,25(10):4842-4857.
APA Xie, Yuan.,Gu, Shuhang.,Liu, Yan.,Zuo, Wangmeng.,Zhang, Wensheng.,...&Yuan Xie.(2016).Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction.IEEE TRANSACTIONS ON IMAGE PROCESSING,25(10),4842-4857.
MLA Xie, Yuan,et al."Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction".IEEE TRANSACTIONS ON IMAGE PROCESSING 25.10(2016):4842-4857.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。