热门
Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction
文献类型:期刊论文
作者 | Xie, Yuan1,2![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON IMAGE PROCESSING
![]() |
出版日期 | 2016-10-01 |
卷号 | 25期号:10页码:4842-4857 |
关键词 | Low Rank Weighted Schatten P-norm Low-level Vision |
DOI | 10.1109/TIP.2016.2599290 |
文献子类 | Article |
英文摘要 | Low rank matrix approximation (LRMA), which aims to recover the underlying low rank matrix from its degraded observation, has a wide range of applications in computer vision. The latest LRMA methods resort to using the nuclear norm minimization (NNM) as a convex relaxation of the nonconvex rank minimization. However, NNM tends to over-shrink the rank components and treats the different rank components equally, limiting its flexibility in practical applications. We propose a more flexible model, namely, the weighted Schatten p-norm minimization (WSNM), to generalize the NNM to the Schatten p-norm minimization with weights assigned to different singular values. The proposed WSNM not only gives better approximation to the original low-rank assumption, but also considers the importance of different rank components. We analyze the solution of WSNM and prove that, under certain weights permutation, WSNM can be equivalently transformed into independent non-convex l(p)-norm subproblems, whose global optimum can be efficiently solved by generalized iterated shrinkage algorithm. We apply WSNM to typical low-level vision problems, e.g., image denoising and background subtraction. Extensive experimental results show, both qualitatively and quantitatively, that the proposed WSNM can more effectively remove noise, and model the complex and dynamic scenes compared with state-of-the-art methods. |
WOS关键词 | RANK MINIMIZATION ; MATRIX COMPLETION ; MISSING DATA ; APPROXIMATION ; FACTORIZATION ; RESTORATION ; ALGORITHMS ; SIGNALS |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000382677700008 |
资助机构 | Hong Kong Scholars Program ; HK RGC GRF(PolyU 5313/13E) ; National Natural Science Foundation of China(61402480 ; 61432008 ; 61472423 ; 61502495 ; 41401383 ; 61373077) |
源URL | [http://ir.ia.ac.cn/handle/173211/12447] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | Yuan Xie |
作者单位 | 1.Hong Kong Polytech Univ, Dept Comp, Visual Comp Lab, Hong Kong, Hong Kong, Peoples R China 2.Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China 3.Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China 4.Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China |
推荐引用方式 GB/T 7714 | Xie, Yuan,Gu, Shuhang,Liu, Yan,et al. Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2016,25(10):4842-4857. |
APA | Xie, Yuan.,Gu, Shuhang.,Liu, Yan.,Zuo, Wangmeng.,Zhang, Wensheng.,...&Yuan Xie.(2016).Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction.IEEE TRANSACTIONS ON IMAGE PROCESSING,25(10),4842-4857. |
MLA | Xie, Yuan,et al."Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction".IEEE TRANSACTIONS ON IMAGE PROCESSING 25.10(2016):4842-4857. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。