中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Tracking blurred object with data-driven tracker

文献类型:会议论文

作者Jianwei Ding; Kaiqi Huang; Tieniu Tan
出版日期2012
会议日期2012
会议地点China
关键词Target Tracking   image Sequences   algorithm Design And Analysis
页码331–336
英文摘要Motion blur is very common in the low quality of image sequences and videos captured by low speed of cameras. Object tracking without accounting for the motion blur would easily fail in these kinds of videos. We propose a new data-driven tracker in the particle filter framework to address this problem without deblurring the image sequences. The motion blur is detected by exploring the property of the blurred input image through Fourier analysis. The appearance model is integrated with a set of motion blur kernels which could reflect different blur effects in real scenes. The motion model is improved to be more robust to sudden motion of the target object. To evaluate the proposed algorithm, several challenging videos with significant motion blur are used in the experiments. The experimental results demonstrate the robustness and accuracy of our algorithm.
会议录2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/12688]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Kaiqi Huang
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Jianwei Ding,Kaiqi Huang,Tieniu Tan. Tracking blurred object with data-driven tracker[C]. 见:. China. 2012.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。