中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Online Codebook Reweighting Using Pairwise Constraints for Image Classification

文献类型:会议论文

作者Xin Zhao; Jianwei Ding; Kaiqi Huang; Tieniu Tan
出版日期2011
会议日期2011
会议地点Beijing, China
关键词Clutter   image Classification   image Coding
页码662-666
英文摘要Bag-of-words (BoW) model is widely used for image classification. Recently, the framework of sparse coding and max pooling proved an effective approach for image classification. Max pooling adopts a winner-take-all strategy. Thus, it can be regarded as a codebook weighting process. The results of this process are the weights of the associated codebook. However, there are high intra-class variations and strong background clutters in many image classification tasks. The weights obtained by max pooling only have limited information. This paper presents a codebook reweighting algorithm using pairwise constraints to improve the performance of sparse coding and max pooling framework. Pairwise constraints are the natural way of encoding the relationships between pairs of images. Therefore, the reweighted codebook is more effective to describe the relevance between pairs of images. An efficient online learning algorithm is presented based on passive-aggressive training strategy. We compare our method with other state-of-the-art methods on Graz-01 & 02 datasets. Experimental results illustrate the effectiveness and efficiency of our method for image classification.
会议录Pattern Recognition, 2011
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/12695]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Kaiqi Huang
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Xin Zhao,Jianwei Ding,Kaiqi Huang,et al. Online Codebook Reweighting Using Pairwise Constraints for Image Classification[C]. 见:. Beijing, China. 2011.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。