中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Robust Moving Object Segmentation with Two Stage Optimization

文献类型:会议论文

作者Jianwei Ding; Xin Zhao; Kaiqi Huang; Tieniu Tan
出版日期2011
会议日期2011
会议地点Beijing, China
关键词Feature Extraction   image Colour Analysis   image Motion Analysis
页码149-153
英文摘要Inspired by interactive segmentation algorithms, we propose an online and unsupervised technique to extract moving objects from videos captured by stationary cameras. Our method consists of two main optimization steps, from local optimal extraction to global optimal segmentation. In the first stage, reliable foreground and background pixels are extracted from input image by modeling distributions of foreground and background with color and motion cues. These reliable pixels provide hard constraints for the next step of segmentation. Then global optimal segmentation of moving object is implemented by graph cuts in the second stage. Experimental results on several challenging videos demonstrate the effectiveness and robustness of the proposed approach.
会议录Pattern Recognition, 2011
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/12697]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Kaiqi Huang
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Jianwei Ding,Xin Zhao,Kaiqi Huang,et al. Robust Moving Object Segmentation with Two Stage Optimization[C]. 见:. Beijing, China. 2011.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。