中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A comparison study on kernel based online learning for moving object classification

文献类型:会议论文

作者Xin Zhao; Kaiqi Huang; Tieniu Tan
出版日期2011
会议日期2011
会议地点Beijing, China
关键词Image Classification   learning (Artificial Intelligence   motion Estimation
页码17-20
英文摘要Most visual surveillance and video understanding systems require knowledge of categories of objects in the scene. One of the key challenges is to be able to classify any object in a real-time procedure in spite of changes in the scene over time and the varying appearance or shape of object. In this paper, we explore the applications of kernel based online learning methods in dealing with the above problems. We evaluate the performance of recently developed kernel based online algorithms combined with the state-of-the-art local shape feature descriptor. We perform the experimental evaluation on our dataset. The experimental results demonstrate that the online algorithms can be highly accurate to the problem of moving object classification.
会议录Conference on Intelligent Visual Surveillance, 2011
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/12699]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Kaiqi Huang
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Xin Zhao,Kaiqi Huang,Tieniu Tan. A comparison study on kernel based online learning for moving object classification[C]. 见:. Beijing, China. 2011.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。