中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Probabilistic Framework Based on KDE-GMM hybrid model (KGHM) for Moving Object Segmentation in Dynamic Scenes

文献类型:会议论文

作者Zhou Liu; Wei Chen; Kaiqi Huang; Tieniu Tan
出版日期2008
会议日期2008
会议地点Marseille , France
关键词Kde-gmm Hybrid Model
页码1-8
英文摘要In real scenes, dynamic background and moving cast shadow always make accurate moving object detection difficult. In this paper, a probabilistic framework for moving object segmentation in dynamic scenes is proposed. Under this framework, we deal with foreground detection and shadow removal simultaneously by constructing probability density functions (PDFs) of moving objects and non-moving objects. Here, these PDFs are constructed based on KDEGMMhybrid model (KGHM) which has advantages of KDE and GMM. This KGHM models the spatial dependencies of neighboring pixel colors to deal with highly dynamic scenes. Moreover, in this framework, tracking information is used to refine the PDF of moving objects. Experimental results demonstrate the effectiveness of our method.
会议录IEEE Conference on Computer Vision & Pattern Recognition 2008
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/12708]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Kaiqi Huang
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Zhou Liu,Wei Chen,Kaiqi Huang,et al. A Probabilistic Framework Based on KDE-GMM hybrid model (KGHM) for Moving Object Segmentation in Dynamic Scenes[C]. 见:. Marseille , France. 2008.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。