中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Boosting Local Feature Descriptors for Automatic Objects Classification in Traffic Scene Surveillance

文献类型:会议论文

作者Zhaoxiang Zhang; Min Li; Kaiqi Huang; Tieniu Tan
出版日期2008-12-08
会议日期8-11 December 2008
会议地点Tampa, Florida, USA
关键词Boosting Layout Surveillance Videos Object Detection Hidden Markov Models Fuses Noise Robustness Cameras Motion Detection
页码1-4
英文摘要We address the problem of automatic object classification for traffic scene surveillance, which is very challenging for the low resolution videos, large intra-class variations and real-time requirement. In this paper, we propose a new strategy for object classification by boosting different local feature descriptors in motion blobs. We not only evaluate the performance of each local feature descriptor, but also fuse these descriptors to achieve better performance. Numerous experiments are conducted and experimental results demonstrate the effectiveness and efficiency of our approach with robustness to noise and variance of view angles, lighting conditions and environments.
会议录 Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/12714]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Zhaoxiang Zhang
推荐引用方式
GB/T 7714
Zhaoxiang Zhang,Min Li,Kaiqi Huang,et al. Boosting Local Feature Descriptors for Automatic Objects Classification in Traffic Scene Surveillance[C]. 见:. Tampa, Florida, USA. 8-11 December 2008.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。