中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Semi-supervised Learning in Traffic Scene Surveillance Based on Label-propagation

文献类型:会议论文

作者Meng Liang; Zhaoxiang Zhang; Yunhong Wang
出版日期2013-09-15
会议日期15-18 September 2013
会议地点Melbourne, Australia
关键词Semi-supervised Learning Traffic Scene Surveillance Object Classification Label Propagation
英文摘要Object classification in traffic scene surveillance has attracted much attention recent years. Traditional classification methods need lots of labeled samples to build a satisfying classifier. However, the acquisition of the labeled samples may cost lots of time and human labor. In this paper, we propose an label-propagation based semi-supervised learning method which uses the information of both labeled and un-labeled samples. Experiment results show that our method outperforms the traditional methods both in accuracy and robustness.
会议录ICIP 2013
源URL[http://ir.ia.ac.cn/handle/173211/13287]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Zhaoxiang Zhang
推荐引用方式
GB/T 7714
Meng Liang,Zhaoxiang Zhang,Yunhong Wang. Semi-supervised Learning in Traffic Scene Surveillance Based on Label-propagation[C]. 见:. Melbourne, Australia. 15-18 September 2013.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。