A Code-Level Approach to Heterogeneous Iris Recognition
文献类型:期刊论文
作者 | Liu, Nianfeng![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
![]() |
出版日期 | 2017-10-01 |
卷号 | 12期号:10页码:2373-2386 |
关键词 | Iris Recognition Heterogeneous Cross-sensor Markov |
DOI | 10.1109/TIFS.2017.2686013 |
文献子类 | Article |
英文摘要 | Matching heterogeneous iris images in less constrained applications of iris biometrics is becoming a challenging task. The existing solutions try to reduce the difference between heterogeneous iris images in pixel intensities or filtered features. In contrast, this paper proposes a code-level approach in heterogeneous iris recognition. The non-linear relationship between binary feature codes of heterogeneous iris images is modeled by an adapted Markov network. This model transforms the number of iris templates in the probe into a homogenous iris template corresponding to the gallery sample. In addition, a weight map on the reliability of binary codes in the iris template can be derived from the model. The learnt iris template and weight map are jointly used in building a robust iris matcher against the variations of imaging sensors, capturing distance, and subject conditions. Extensive experimental results of matching cross-sensor, high-resolution versus low-resolution and, clear versus blurred iris images demonstrate the code-level approach can achieve the highest accuracy in compared with the existing pixel-level, feature-level, and score-level solutions. |
WOS关键词 | SUPERRESOLUTION ; SYSTEMS |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000406238100001 |
资助机构 | National Key Research and Development Program of China(2016YFB1001000) ; Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02080007) ; National Natural Science Foundation of China(61573360) |
源URL | [http://ir.ia.ac.cn/handle/173211/14807] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
作者单位 | Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Natl Lab Pattern Recognit,Ctr Res Intelligent Per, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Nianfeng,Liu, Jing,Sun, Zhenan,et al. A Code-Level Approach to Heterogeneous Iris Recognition[J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,2017,12(10):2373-2386. |
APA | Liu, Nianfeng,Liu, Jing,Sun, Zhenan,&Tan, Tieniu.(2017).A Code-Level Approach to Heterogeneous Iris Recognition.IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,12(10),2373-2386. |
MLA | Liu, Nianfeng,et al."A Code-Level Approach to Heterogeneous Iris Recognition".IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12.10(2017):2373-2386. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。