中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Image Class Prediction by Joint Object, Context, and Background Modeling

文献类型:期刊论文

作者Zhang, Chunjie1,2,3; Zhu, Guibo4; Liang, Chao5; Zhang, Yifan6; Huang, Qingming2; Tian, Qi7
刊名IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
出版日期2018-02-01
卷号28期号:2页码:428-438
关键词Background Modeling Context Modeling Image Class Prediction Object Modeling
DOI10.1109/TCSVT.2016.2613125
文献子类Article
英文摘要State-of-the-art image classification methods often use spatial pyramid matching or its variants to make use of the spatial layout of visual features. However, objects may appear at various places with different scales and orientations. Besides, traditionally object-centric-based methods only consider objects and the background without fully exploring the context information. To solve these problems, in this paper we propose a novel image classification method by jointly modeling the object, context, and background information (OCB). OCB consists of three components: 1) locate the positions of objects; 2) determine the context areas of objects; and 3) treat the other areas as the background. We use objectness proposal techniques to select candidate bounding boxes. Boxes with high confidence scores are combined to determine objects' positions. To select the context areas, we use candidate boxes that have relatively lower confidence scores compared with boxes for object location selection. The other areas are viewed as the background. We jointly combine the object, context, and background for image representation and classification. Experiments on six data sets well demonstrate the superiority of the proposed OCB method over other spatial partition methods.
WOS关键词CLASSIFICATION ; FEATURES
WOS研究方向Engineering
语种英语
WOS记录号WOS:000425036400013
资助机构National Natural Science Foundation of China(61303154)
源URL[http://ir.ia.ac.cn/handle/173211/15314]  
专题自动化研究所_类脑智能研究中心
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Inst Automat, Beijing 100190, Peoples R China
5.Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp, Wuhan 430072, Hubei, Peoples R China
6.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
7.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
推荐引用方式
GB/T 7714
Zhang, Chunjie,Zhu, Guibo,Liang, Chao,et al. Image Class Prediction by Joint Object, Context, and Background Modeling[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2018,28(2):428-438.
APA Zhang, Chunjie,Zhu, Guibo,Liang, Chao,Zhang, Yifan,Huang, Qingming,&Tian, Qi.(2018).Image Class Prediction by Joint Object, Context, and Background Modeling.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,28(2),428-438.
MLA Zhang, Chunjie,et al."Image Class Prediction by Joint Object, Context, and Background Modeling".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 28.2(2018):428-438.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。