中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Incremental Codebook Adaptation for Visual Representation and Categorization

文献类型:期刊论文

作者Zhang, Chunjie1; Cheng, Jian2; Tian, Qi3
刊名IEEE TRANSACTIONS ON CYBERNETICS
出版日期2018-07-01
卷号48期号:7页码:2012-2023
关键词Codebook learning low-rank sparse coding visual representation
ISSN号2168-2267
DOI10.1109/TCYB.2017.2726079
通讯作者Zhang, Chunjie(chunjie.zhang@ia.ac.cn)
英文摘要The bag-of-visual-words model is widely used for visual content analysis. For visual data, the codebook plays an important role for efficient representation. However, the codebook has to be relearned with the changes of training images. Once the codebook is changed, the encoding parameters of local features have to be recomputed. To alleviate this problem, in this paper, we propose an incremental codebook adaptation method for efficient visual representation. Instead of learning a new codebook, we gradually adapt a prelearned codebook using new images in an incremental way. To make use of the prelearned codebook, we try to make changes to the prelearned codebook with sparsity constraint and low-rank correlation. Besides, we also encode visually similar local features within a neighborhood to take advantage of locality information and ensure the encoded parameters are consistent. To evaluate the effectiveness of the proposed method, we apply the proposed method for categorization tasks on several public image datasets. Experimental results prove the effectiveness and usefulness of the proposed method over other codebook-based methods.
WOS关键词VIEW ACTION RECOGNITION ; IMAGE CLASSIFICATION ; LOW-RANK ; SPARSE REPRESENTATION ; DOMAIN ADAPTATION ; SCENE CATEGORIES ; DICTIONARY ; KERNEL ; DECOMPOSITION ; INTEGRATION
资助项目National Natural Science Foundation of China[61303154] ; National Natural Science Foundation of China[61332016] ; Scientific Research Key Program of Beijing Municipal Commission of Education[KZ201610005012] ; National Science Foundation of China[61429201] ; ARO[W911NF-15-1-0290] ; Faculty Research Gift Awards by NEC Laboratories of America and Blippar
WOS研究方向Automation & Control Systems ; Computer Science
语种英语
WOS记录号WOS:000435342100006
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; Scientific Research Key Program of Beijing Municipal Commission of Education ; National Science Foundation of China ; ARO ; Faculty Research Gift Awards by NEC Laboratories of America and Blippar
源URL[http://ir.ia.ac.cn/handle/173211/15319]  
专题类脑芯片与系统研究
通讯作者Zhang, Chunjie
作者单位1.Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
3.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
推荐引用方式
GB/T 7714
Zhang, Chunjie,Cheng, Jian,Tian, Qi. Incremental Codebook Adaptation for Visual Representation and Categorization[J]. IEEE TRANSACTIONS ON CYBERNETICS,2018,48(7):2012-2023.
APA Zhang, Chunjie,Cheng, Jian,&Tian, Qi.(2018).Incremental Codebook Adaptation for Visual Representation and Categorization.IEEE TRANSACTIONS ON CYBERNETICS,48(7),2012-2023.
MLA Zhang, Chunjie,et al."Incremental Codebook Adaptation for Visual Representation and Categorization".IEEE TRANSACTIONS ON CYBERNETICS 48.7(2018):2012-2023.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。