中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
FusionNet: Edge Aware Deep Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor Images

文献类型:期刊论文

作者Cheng, Dongcai; Meng, Gaofeng; Xiang, Shiming; Pan, Chunhong
刊名IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
出版日期2017-12-01
卷号10期号:12页码:5769-5783
关键词Edge Aware Regularization Harbor Images Multitask Learning Semantic Segmentation
DOI10.1109/JSTARS.2017.2747599
文献子类Article
英文摘要Sea-land segmentation and ship detection are two prevalent research domains for optical remote sensing harbor images and can find many applications in harbor supervision and management. As the spatial resolution of imaging technology improves, traditional methods struggle to perform well due to the complicated appearance and background distributions. In this paper, we unify the above two tasks into a single framework and apply the deep convolutional neural networks to predict pixelwise label for an input. Specifically, an edge aware convolutional network is proposed to parse a remote sensing harbor image into three typical objects, e. g., sea, land, and ship. Two innovations are made on top of the deep structure. First, we design a multitask model by simultaneously training the segmentation and edge detection networks. Hierarchical semantic features fromthe segmentation network are extracted to learn the edge network. Second, the outputs of edge pipeline are further employed to refine entire model by adding an edge aware regularization, which helps our method to yield very desirable results that are spatially consistent and well boundary located. It also benefits the segmentation of docked ships that are quite challenging for many previous methods. Experimental results on two datasets collected fromGoogleEarth have demonstrated the effectiveness of our approach both in quantitative and qualitative performance compared with state-of-the-art methods.
WOS关键词INSHORE SHIP DETECTION ; NEURAL-NETWORK ; SATELLITE IMAGERY ; AERIAL IMAGES ; CLASSIFICATION ; EXTRACTION ; SHAPE ; INFORMATION ; FEATURES ; SALIENCY
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000418871200036
资助机构National 863 projects(2015AA042307) ; National Natural Science Foundation of China(91338202 ; Beijing Natural Science Foundation(4162064) ; 91438105 ; 91646207 ; 61370039)
源URL[http://ir.ia.ac.cn/handle/173211/15515]  
专题自动化研究所_模式识别国家重点实验室_遥感图像处理团队
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Dongcai,Meng, Gaofeng,Xiang, Shiming,et al. FusionNet: Edge Aware Deep Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor Images[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2017,10(12):5769-5783.
APA Cheng, Dongcai,Meng, Gaofeng,Xiang, Shiming,&Pan, Chunhong.(2017).FusionNet: Edge Aware Deep Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor Images.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,10(12),5769-5783.
MLA Cheng, Dongcai,et al."FusionNet: Edge Aware Deep Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor Images".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 10.12(2017):5769-5783.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。