中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
DeepStyle: Learning User Preferences for Visual Recommendation

文献类型:会议论文

作者Liu, Qiang1,2; Wu, Shu1,2; Wang, Liang1,2
出版日期2017-08
会议日期2017-8
会议地点Tokyo, Japan
关键词Visual Recommendation User Preferences Style Features
英文摘要Visual information is an important factor in recommender systems. Some studies have been done to model user preferences for visual recommendation. Usually, an item consists of two fundamental components: style and category. Conventional methods model items in a common visual feature space. In these methods, visual representations always can only capture the categorical information but fail in capturing the styles of items. Style information indicates the preferences of users and has significant effect in visual recommendation. Accordingly, we propose a DeepStyle method for learning style features of items and sensing preferences of users. Experiments conducted on two real-world datasets illustrate the effectiveness of DeepStyle for visual recommendation.
源URL[http://ir.ia.ac.cn/handle/173211/19617]  
专题自动化研究所_智能感知与计算研究中心
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Liu, Qiang,Wu, Shu,Wang, Liang. DeepStyle: Learning User Preferences for Visual Recommendation[C]. 见:. Tokyo, Japan. 2017-8.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。