中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep Semantic Structural Constraints for Zero-Shot Learning

文献类型:会议论文

作者Li Y(李岩); Jia Z(贾真); Zhang JG(张俊格); Huang KQ(黄凯奇); Tan TN(谭铁牛); Jia, Zhen; Li, Yan; Huang, Kaiqi; Tan, Tieniu; Zhang, Junge
出版日期2018
会议日期2018.2.2-2018.2.7
会议地点New Orleans, Louisiana, USA
英文摘要

Zero-shot learning aims to classify unseen image categories by learning a visual-semantic embedding space. In most cases, the traditional methods adopt a separated two-step pipeline that extracts image features from pre-trained CNN models. Then the fixed image features are utilized to learn the embedding space. It leads to the lack of specific structural semantic information of image features for zero-shot learning task. In this paper, we propose an end-to-end trainable Deep Semantic Structural Constraints model to address this issue. The proposed model contains the Image Feature Structure constraint and the Semantic Embedding Structure constraint, which aim to learn structure-preserving image features and endue the learned embedding space with stronger generalization ability respectively. With the assistance of semantic structural information, the model gains more auxiliary clues for zero-shot learning. The state-of-the-art performance certifies the effectiveness of our proposed method.

源URL[http://ir.ia.ac.cn/handle/173211/19687]  
专题自动化研究所_智能感知与计算研究中心
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Li Y,Jia Z,Zhang JG,et al. Deep Semantic Structural Constraints for Zero-Shot Learning[C]. 见:. New Orleans, Louisiana, USA. 2018.2.2-2018.2.7.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。