中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Opposition-based particle swarm optimization with adaptive mutation strategy

文献类型:期刊论文

作者Dong, Wenyong1; Kang, Lanlan1,2; Zhang, Wensheng3
刊名SOFT COMPUTING
出版日期2017-09-01
卷号21期号:17页码:5081-5090
关键词Particle Swarm Optimization Adaptive Mutation Generalized Opposition-based Learning Adaptive Nonlinear Inertia Weight
DOI10.1007/s00500-016-2102-5
文献子类Article
英文摘要To solve the problem of premature convergence in traditional particle swarm optimization (PSO), an opposition-based particle swarm optimization with adaptive mutation strategy (AMOPSO) is proposed in this paper. In all the variants of PSO, the generalized opposition-based PSO (GOPSO), which introduces the generalized opposition-based learning (GOBL), is a prominent one. However, GOPSO may increase probability of being trapped into local optimum. Thus we introduce two complementary strategies to improve the performance of GOPSO: (1) a kind of adaptive mutation selection strategy (AMS) is used to strengthen its exploratory ability, and (2) an adaptive nonlinear inertia weight (ANIW) is introduced to enhance its exploitative ability. The rational principles are as follows: (1) AMS aims to perform local search around the global optimal particle in current population by adaptive disturbed mutation, so it can be beneficial to improve its exploratory ability and accelerate its convergence speed; (2) because it makes the PSO become rigid to keep fixed constant for the inertia weight, ANIW is used to adaptively tune the inertia weight to balance the contradiction between exploration and exploitation during its iteration process. Compared with several opposition-based PSOs on 14 benchmark functions, the experimental results show that the performance of the proposed AMOPSO algorithm is better or competitive to compared algorithms referred in this paper.
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000408231900018
资助机构National Natural Science Foundation of China(61170305 ; Natural Science Foundation of Guangdong Province of China(2014A030313454) ; Foundation of science, technology bureau of Liuzhou city of Guangxi Province of China(2014J020401) ; 61573157 ; 61562025)
源URL[http://ir.ia.ac.cn/handle/173211/20721]  
专题精密感知与控制研究中心_人工智能与机器学习
作者单位1.Wuhan Univ, Comp Sch, Wuhan 430072, Hubei, Peoples R China
2.Jiangxi Univ Sci & Technol, Sch Apply Sci, Ganzhou 341000, Peoples R China
3.Chinese Acad Sci, State Key Lab Intelligent Control & Management Co, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Dong, Wenyong,Kang, Lanlan,Zhang, Wensheng. Opposition-based particle swarm optimization with adaptive mutation strategy[J]. SOFT COMPUTING,2017,21(17):5081-5090.
APA Dong, Wenyong,Kang, Lanlan,&Zhang, Wensheng.(2017).Opposition-based particle swarm optimization with adaptive mutation strategy.SOFT COMPUTING,21(17),5081-5090.
MLA Dong, Wenyong,et al."Opposition-based particle swarm optimization with adaptive mutation strategy".SOFT COMPUTING 21.17(2017):5081-5090.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。