Discriminating Bipolar Disorder from Major Depression Based on Kernel Svm Using Functional Independent Components
文献类型:会议论文
作者 | Shuang Gao![]() ![]() ![]() |
出版日期 | 2017 |
会议日期 | 2017/9/25-28 |
会议地点 | Tokyo, Japan. |
关键词 | Independent Component Analysis Linear Subspace Kernel Svm Bipolar Disorder Major Depression Disorder Fmri Data Schizophrenia Unipolar Amygdala |
英文摘要 | In this paper we describe a deconvolution technique for estimation of the neuronal signal from an observed hemodynamic responses in fMRI data. Our approach, based on the Rauch-Tung-Striebel smoother for square-root cubature Kalman filter, enables us to accurately infer the hidden states, parameters, and the input of the dynamic system. Additionally, we enhance the cubature Kalman filter with a variational Bayesian approach for adaptive estimation of the measurement noise covariance. |
源URL | [http://ir.ia.ac.cn/handle/173211/20794] ![]() |
专题 | 自动化研究所_脑网络组研究中心 |
作者单位 | Institute of Automation Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Shuang Gao,Elizabeth A Osuch,Michael Wammes,et al. Discriminating Bipolar Disorder from Major Depression Based on Kernel Svm Using Functional Independent Components[C]. 见:. Tokyo, Japan.. 2017/9/25-28. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。