中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Discriminating Bipolar Disorder from Major Depression Based on Kernel Svm Using Functional Independent Components

文献类型:会议论文

作者Shuang Gao; Elizabeth A Osuch; Michael Wammes; Jean Théberge; Tianzi Jiang; Vince D Calhoun; Sui Jing(隋婧)
出版日期2017
会议日期2017/9/25-28
会议地点Tokyo, Japan.
关键词Independent Component Analysis Linear Subspace Kernel Svm Bipolar Disorder Major Depression Disorder Fmri Data Schizophrenia Unipolar Amygdala
英文摘要In this paper we describe a deconvolution technique for estimation of the neuronal signal from an observed hemodynamic responses in fMRI data. Our approach, based on the Rauch-Tung-Striebel smoother for square-root cubature Kalman filter, enables us to accurately infer the hidden states, parameters, and the input of the dynamic system. Additionally, we enhance the cubature Kalman filter with a variational Bayesian approach for adaptive estimation of the measurement noise covariance.
源URL[http://ir.ia.ac.cn/handle/173211/20794]  
专题自动化研究所_脑网络组研究中心
作者单位Institute of Automation Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Shuang Gao,Elizabeth A Osuch,Michael Wammes,et al. Discriminating Bipolar Disorder from Major Depression Based on Kernel Svm Using Functional Independent Components[C]. 见:. Tokyo, Japan.. 2017/9/25-28.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。