中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
RotateConv: Making Asymmetric Convolutional Kernels Rotatable

文献类型:会议论文

作者Ma JB(马佳彬)1,2; Guo WY(郭韦煜)1; Wang W(王威)1; Wang L(王亮)1
出版日期2018-08
会议日期August 20-24 2018
会议地点Beijing, China
英文摘要In deep Convolutional Neural Networks(CNN), the design of kernel shapes influences a lot on the model size and performance. In this work, our proposed method, RotateConv, applies a novel kernel shape to massively reduce the number of parameters while maintaining considerable performance. The new shape is extremely simple as a line segment one, and we equip it with the rotatable ability which aims to learn diverse features with respect to different angles. The kernel weights and angles are learned simultaneously during end-to-end training via the standard back-propagation algorithm. There are two variants of RotateConv that only have 2 and 4 parameters respectively depending on whether using weight sharing, which are much compressed than the normal 3x3 kernel with 9 parameters. In experiments, we validate our RotateConv with two classical models, ResNet and DenseNet, on four image classification benchmark datasets, namely MNIST, CIFAR10, CIFAR100 and SVHN.
语种英语
URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/20885]  
专题自动化研究所_智能感知与计算研究中心
作者单位1.中国科学院自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
Ma JB,Guo WY,Wang W,et al. RotateConv: Making Asymmetric Convolutional Kernels Rotatable[C]. 见:. Beijing, China. August 20-24 2018.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。