中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
MFC: A Multi-scale Fully Convolutional Approach for Visual Instance Retrieval

文献类型:会议论文

作者Hao, Jiedong1,2; Wang, Wei1; Dong, Jing1; Tan, Tieniu1
出版日期2017-09
会议日期10-14 July 2017
会议地点Hong Kong
关键词Visual Instance Retrieval Image Resizing Strategy Multi-scale Representation Fully Convolutional Neural Network
英文摘要Previous work has shown that feature maps of deep convolutional neural networks (CNNs) can be interpreted as feature representation of an image. Image features aggregated from these feature maps have achieved steady progress in terms of performances on visual instance retrieval tasks in recent years. The key to the success of such methods is feature representation. Inthispaper,westudyhowtorepresentanimage using discriminative features. We demonstrate first that image size is an important factor which affects the performance of instance retrieval but has not been thoroughly discussed in previous work. Based on experimental evaluations, we propose a multi-scale fully convolutional (MFC) approach to encode the image efficiently and effectively. The proposed method is simple to implement, which does not employ sophisticated post-processing techniques such as query expansion, yet shows promising results on four public datasets. 
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/20992]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Dong, Jing
作者单位1.中国科学院自动化研究所智能感知与计算研究中心
2.中国科学院大学
推荐引用方式
GB/T 7714
Hao, Jiedong,Wang, Wei,Dong, Jing,et al. MFC: A Multi-scale Fully Convolutional Approach for Visual Instance Retrieval[C]. 见:. Hong Kong. 10-14 July 2017.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。