An Improved Particle Swarm Optimization Based on Self-Adaptive Escape Velocity
文献类型:期刊论文
作者 | Ran He(赫然)![]() |
刊名 | Chinese Journal of Software
![]() |
出版日期 | 2005 |
卷号 | 16期号:12页码:2036-2044 |
关键词 | Particle Swarm Optimization Escape Velocity Self-adaptive Mutation Swarm Intelligence |
英文摘要 | To deal with the problem of premature convergence and slow search speed, this paper proposes a novel particle swarm optimization (PSO) called self-adaptive escape PSO, which is guaranteed to converge to the global optimization solution with probability one. Considering that the organisms have the phenomena of escaping from the original cradle when they find the survival density is too high to live, this paper uses a special mutation –escape operator to make particles explore the search space more efficiently. The novel strategy produces a large speed value dynamically according to the variation of the speed, which makes the algorithm explore the local and global minima thoroughly at the same time. Experimental simulations show that the proposed method can not only significantly speed up the convergence, but also effectively solve the premature convergence problem . |
源URL | [http://ir.ia.ac.cn/handle/173211/21081] ![]() |
专题 | 自动化研究所_09年以前成果 |
推荐引用方式 GB/T 7714 | Ran He,Yongji Wang,Qing Wang,et al. An Improved Particle Swarm Optimization Based on Self-Adaptive Escape Velocity[J]. Chinese Journal of Software,2005,16(12):2036-2044. |
APA | Ran He,Yongji Wang,Qing Wang,&Jinhui Zhou.(2005).An Improved Particle Swarm Optimization Based on Self-Adaptive Escape Velocity.Chinese Journal of Software,16(12),2036-2044. |
MLA | Ran He,et al."An Improved Particle Swarm Optimization Based on Self-Adaptive Escape Velocity".Chinese Journal of Software 16.12(2005):2036-2044. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。