基于对抗学习的非受控环境下人脸识别方法研究
文献类型:学位论文
作者 | 胡一博1,3![]() |
答辩日期 | 2018-05-22 |
授予单位 | 中国科学院研究生院 |
授予地点 | 北京 |
导师 | 赫然 |
关键词 | 人脸识别 对抗学习 卷积神经网络 非受控环境 |
英文摘要 |
随着深度学习技术的快速发展,人脸识别技术取得了重大突破并迎来了运用的井喷期,目前已被广泛地应用于银行金融、公共安防以及社交媒体等场景。此外,在大数据时代背景下海量人脸数据的采集变得更加方便快捷,丰富的人脸图像给人脸识别技术的研究奠定了数据基础,并带来了空前的机遇。然而,在实际应用中,人脸数据的采集通常是在非受控的自然场景下进行的,采集到的图像常含有大量的噪声以及分辨率、光照条件、姿态角度、面部表情、遮挡等变化,导致识别的性能急剧下降,给人脸识别技术的研究带来了巨大的挑战。如何有效地抑制这些噪声和变化,提取准确鲁棒的人脸图像特征,进而实现在非受控环境下有效的人脸识别,仍是当前人脸识别技术面临的重大挑战。
本文以对抗学习为技术基础,借鉴对抗学习能隐式地约束分布之间的距离和生成逼真图像的特性,探索非受控环境下人脸识别问题中颇具代表性的视频人脸识别和跨姿态人脸识别问题。具体研究内容如下:
1. 提出了一种基于注意集度量学习的视频人脸识别方法,通过结合最大均值差异与注意力机制更好地利用了视频中不同帧之间的关系,抑制了训练数据中的噪声,促进了卷积神经网络提取到更加鲁棒的人脸特征。同时,它也为我们后续更加深入地研究视频人脸识别打下了坚实的基础。
2. 提出了一种基于对抗嵌入和变分融合的视频人脸识别方法,通过自对抗过程和一个变分推断结构来学习更有判别性的人脸特征和准确的融合模型。对抗嵌入和变分融合可以取代在视频人脸识别中广泛使用的深度度量学习方法,如对比损失、三元组损失等,而无需设置距离阈值超参数和复杂的采样策略,并可以取得更准确的视频人脸识别效果。
3. 提出了一种基于偶代理姿态引导生成对抗网络的跨姿态人脸识别方法,通过将侧面姿态人脸依据先验域知识合成为正面姿态,进而进行跨姿态的人脸识别。偶代理姿态引导生成对抗网络不仅可以将侧面人脸正面化以提升人脸识别性能,也可以旋转正面人脸到任意的姿态来增广数据。 |
源URL | [http://ir.ia.ac.cn/handle/173211/21176] ![]() |
专题 | 毕业生_硕士学位论文 |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学 3.智能感知与计算研究中心 |
推荐引用方式 GB/T 7714 | 胡一博. 基于对抗学习的非受控环境下人脸识别方法研究[D]. 北京. 中国科学院研究生院. 2018. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。