Learning With Coefficient-Based Regularized Regression on Markov Resampling
文献类型:期刊论文
作者 | Li, Luoqing1; Li, Weifu1; Zou, Bin1; Wang, Yulong2,3; Tang, Yuan Yan3; Han, Hua4![]() |
刊名 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
出版日期 | 2018-09-01 |
卷号 | 29期号:9页码:4166-4176 |
关键词 | Coefficient-based Regularized Regression (Cbrr) Learning Rate Markov Resampling Uniformly Ergodic Markov Chain (U.e.m.c.) |
DOI | 10.1109/TNNLS.2017.2757140 |
文献子类 | Article |
英文摘要 | Big data research has become a globally hot topic in recent years. One of the core problems in big data learning is how to extract effective information from the huge data. In this paper, we propose a Markov resampling algorithm to draw useful samples for handling coefficient-based regularized regression (CBRR) problem. The proposed Markov resampling algorithm is a selective sampling method, which can automatically select uniformly ergodic Markov chain (u.e.M.c.) samples according to transition probabilities. Based on u.e.M.c. samples, we analyze the theoretical performance of CBRR algorithm and generalize the existing results on independent and identically distributed observations. To be specific, when the kernel is infinitely differentiable, the learning rate depending on the sample size m can be arbitrarily close to O(m(-1)) under a mild regularity condition on the regression function. The good generalization ability of the proposed method is validated by experiments on simulated and real data sets. |
WOS关键词 | NEURAL-NETWORKS ; GENERALIZATION PERFORMANCE ; ERROR ANALYSIS ; CLASSIFICATION ; KERNELS ; CHAINS ; OPTIMIZATION ; ALGORITHMS ; TOKAMAK ; MODELS |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000443083700019 |
资助机构 | National Natural Science Foundation of China(11771130 ; Strategic Priority Research Program of the CAS(XDB02060000) ; University of Macau(MYRG205(Y1-L4)-FST11-TYY ; Science and Technology Development Fund (FDCT) of Macau(100-2012-A3 ; 11371007 ; MYRG187(Y1-L3)-FST11-TYY ; 026-2013-A) ; 61702057 ; RDG009/FST-TYY/2012) ; 61273244) |
源URL | [http://ir.ia.ac.cn/handle/173211/21825] ![]() |
专题 | 类脑智能研究中心_微观重建与智能分析 |
作者单位 | 1.Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China 2.Chengdu Univ, Sch Informat Sci & Engn, Chengdu 610106, Sichuan, Peoples R China 3.Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China 4.Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Luoqing,Li, Weifu,Zou, Bin,et al. Learning With Coefficient-Based Regularized Regression on Markov Resampling[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(9):4166-4176. |
APA | Li, Luoqing,Li, Weifu,Zou, Bin,Wang, Yulong,Tang, Yuan Yan,&Han, Hua.(2018).Learning With Coefficient-Based Regularized Regression on Markov Resampling.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(9),4166-4176. |
MLA | Li, Luoqing,et al."Learning With Coefficient-Based Regularized Regression on Markov Resampling".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.9(2018):4166-4176. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。