DENSITY-MATRIX RENORMALIZATION-GROUP CALCULATION OF CORRELATION-FUNCTIONS IN THE ONE-DIMENSIONAL HUBBARD-MODEL
文献类型:期刊论文
作者 | SU, ZB![]() ![]() ![]() |
刊名 | PHYSICAL REVIEW B
![]() |
出版日期 | 1995 |
卷号 | 52期号:8页码:R5475-R5478 |
关键词 | Momentum Distribution Correlation Exponents Heisenberg Chain Quantum Fluids Field Systems |
ISSN号 | 0163-1829 |
英文摘要 | We have studied correlation functions of the one-dimensional Hubbard model using the density-matrix numerical renormalization-group approach. The singularity exponents of the momentum distribution at k=k(F) and 3k(F), as well as the power-law singularity of the spin-correlation function, are computed for large U (U/t=10(3)). The momentum-distribution exponent at k=k(F) and the spin-correlation exponent are in agreement with the analytic results, while the calculated exponent for momentum distribution at k=3k(F) is about 3/4, which disagrees with the analytically predicted value 9/8. We also discuss several techniques for an accurate calculation of the correlation functions. |
学科主题 | Physics |
公开日期 | 2012-08-28 |
源URL | [http://ir.itp.ac.cn/handle/311006/11714] ![]() |
专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
通讯作者 | QIN, SJ , ACAD SINICA,INST THEORET PHYS,POB 2735,BEIJING 100080,PEOPLES R CHINA. |
推荐引用方式 GB/T 7714 | SU, ZB,YU, L,QIN, SJ , ACAD SINICA,INST THEORET PHYS,POB 2735,BEIJING 100080,PEOPLES R CHINA.,et al. DENSITY-MATRIX RENORMALIZATION-GROUP CALCULATION OF CORRELATION-FUNCTIONS IN THE ONE-DIMENSIONAL HUBBARD-MODEL[J]. PHYSICAL REVIEW B,1995,52(8):R5475-R5478. |
APA | SU, ZB,YU, L,QIN, SJ , ACAD SINICA,INST THEORET PHYS,POB 2735,BEIJING 100080,PEOPLES R CHINA.,QIN, SJ,&LIANG, SD.(1995).DENSITY-MATRIX RENORMALIZATION-GROUP CALCULATION OF CORRELATION-FUNCTIONS IN THE ONE-DIMENSIONAL HUBBARD-MODEL.PHYSICAL REVIEW B,52(8),R5475-R5478. |
MLA | SU, ZB,et al."DENSITY-MATRIX RENORMALIZATION-GROUP CALCULATION OF CORRELATION-FUNCTIONS IN THE ONE-DIMENSIONAL HUBBARD-MODEL".PHYSICAL REVIEW B 52.8(1995):R5475-R5478. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。