CHAOTIC SYSTEMS - COUNTING THE NUMBER OF PERIODS
文献类型:期刊论文
作者 | XIE, FG; HAO, BL; HAO, BL , ACAD SINICA,INST THEORET PHYS,POB 2735,BEIJING 100080,PEOPLES R CHINA. |
刊名 | PHYSICA A
![]() |
出版日期 | 1993 |
卷号 | 194期号:40912页码:77-85 |
关键词 | Symbolic Dynamics Cubic Map Endomorphisms Cycles |
ISSN号 | 0378-4371 |
英文摘要 | Characterization of chaotic motion may proceed both at an averaged ''macroscopic'' level, using such notions as Lyapunov exponents, dimensions and entropies, and at a ''microscopic'' level. In the latter case, the number of periodic orbits, being a topological invariant, plays an important role. For various one-dimensional mappings, the counting problem itself has many interesting facets and may be solved more or less completely in different ways. Recent progress in this counting problem is summarized with the hope that the explicit results obtained may be useful for classification of higher-dimensional dissipative chaotic systems. |
学科主题 | Physics |
URL标识 | 查看原文 |
公开日期 | 2012-08-29 |
源URL | [http://ir.itp.ac.cn/handle/311006/12054] ![]() |
专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
通讯作者 | HAO, BL , ACAD SINICA,INST THEORET PHYS,POB 2735,BEIJING 100080,PEOPLES R CHINA. |
推荐引用方式 GB/T 7714 | XIE, FG,HAO, BL,HAO, BL , ACAD SINICA,INST THEORET PHYS,POB 2735,BEIJING 100080,PEOPLES R CHINA.. CHAOTIC SYSTEMS - COUNTING THE NUMBER OF PERIODS[J]. PHYSICA A,1993,194(40912):77-85. |
APA | XIE, FG,HAO, BL,&HAO, BL , ACAD SINICA,INST THEORET PHYS,POB 2735,BEIJING 100080,PEOPLES R CHINA..(1993).CHAOTIC SYSTEMS - COUNTING THE NUMBER OF PERIODS.PHYSICA A,194(40912),77-85. |
MLA | XIE, FG,et al."CHAOTIC SYSTEMS - COUNTING THE NUMBER OF PERIODS".PHYSICA A 194.40912(1993):77-85. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。