Three-dimensional vertex model related BCC model in statistical mechanics
文献类型:期刊论文
| 作者 | Hu, ZN; Hu, ZN , Acad Sinica, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China. |
| 刊名 | COMMUNICATIONS IN THEORETICAL PHYSICS
![]() |
| 出版日期 | 1998 |
| 卷号 | 29期号:2页码:217-224 |
| 关键词 | Baxter-bazhanov Model Star-triangle Relation Tetrahedron Equations Potts-model Square |
| ISSN号 | 0253-6102 |
| 英文摘要 | In this paper, a three-dimensional vertex model is obtained. It is a duality of the three-dimensional integrable lattice model with N states proposed by Boos, Mangazeev, Sergeev and Stroganov. The Boltzmann weight of the model is dependent on four spin variables, which are the linear combinations of the spins on the corner sites of the cube, and obeys the modified vertex-type tetrahedron equation. This vertex model can be regarded as a deformation of the one related to the three-dimensional Baxter-Bazhanov model. The constrained conditions of the spectrums are discussed in detail and the symmetry properties of weight functions of the vertex model are presented. |
| 学科主题 | Physics |
| URL标识 | 查看原文 |
| WOS记录号 | WOS:000073012900011 |
| 公开日期 | 2012-08-29 |
| 源URL | [http://ir.itp.ac.cn/handle/311006/12338] ![]() |
| 专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
| 通讯作者 | Hu, ZN , Acad Sinica, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China. |
| 推荐引用方式 GB/T 7714 | Hu, ZN,Hu, ZN , Acad Sinica, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China.. Three-dimensional vertex model related BCC model in statistical mechanics[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,1998,29(2):217-224. |
| APA | Hu, ZN,&Hu, ZN , Acad Sinica, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China..(1998).Three-dimensional vertex model related BCC model in statistical mechanics.COMMUNICATIONS IN THEORETICAL PHYSICS,29(2),217-224. |
| MLA | Hu, ZN,et al."Three-dimensional vertex model related BCC model in statistical mechanics".COMMUNICATIONS IN THEORETICAL PHYSICS 29.2(1998):217-224. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

