A multisymplectic variational integrator for the nonlinear Schrodinger equation
文献类型:期刊论文
作者 | Chen, JB; Qin, MZ; Chen, JB , Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China. |
刊名 | NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2002 |
卷号 | 18期号:4页码:523-536 |
关键词 | Hamiltonian Wave-equations Symplectic Methods Geometry |
ISSN号 | 0749-159X |
英文摘要 | The multisymplectic structure for the nonlinear Schrodinger equation is presented. Based on the multisymplectic structure, we derive a nine-point variational integrator from the discrete variational principle and a six-point multisymplectic integrator from the Preissman multisymplectic scheme. We,show that the two integrators are essentially equivalent. Therefore, we call it a multisymplectic variational integrator. (C) 2002 Wiley Periodicals, Inc. |
学科主题 | Physics |
URL标识 | 查看原文 |
WOS记录号 | WOS:000176318100006 |
公开日期 | 2012-08-29 |
源URL | [http://ir.itp.ac.cn/handle/311006/13487] ![]() |
专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
通讯作者 | Chen, JB , Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China. |
推荐引用方式 GB/T 7714 | Chen, JB,Qin, MZ,Chen, JB , Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China.. A multisymplectic variational integrator for the nonlinear Schrodinger equation[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,2002,18(4):523-536. |
APA | Chen, JB,Qin, MZ,&Chen, JB , Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China..(2002).A multisymplectic variational integrator for the nonlinear Schrodinger equation.NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,18(4),523-536. |
MLA | Chen, JB,et al."A multisymplectic variational integrator for the nonlinear Schrodinger equation".NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 18.4(2002):523-536. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。