中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A multisymplectic variational integrator for the nonlinear Schrodinger equation

文献类型:期刊论文

作者Chen, JB; Qin, MZ; Chen, JB , Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China.
刊名NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
出版日期2002
卷号18期号:4页码:523-536
关键词Hamiltonian Wave-equations Symplectic Methods Geometry
ISSN号0749-159X
英文摘要The multisymplectic structure for the nonlinear Schrodinger equation is presented. Based on the multisymplectic structure, we derive a nine-point variational integrator from the discrete variational principle and a six-point multisymplectic integrator from the Preissman multisymplectic scheme. We,show that the two integrators are essentially equivalent. Therefore, we call it a multisymplectic variational integrator. (C) 2002 Wiley Periodicals, Inc.
学科主题Physics
URL标识查看原文
WOS记录号WOS:000176318100006
公开日期2012-08-29
源URL[http://ir.itp.ac.cn/handle/311006/13487]  
专题理论物理研究所_理论物理所1978-2010年知识产出
通讯作者Chen, JB , Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China.
推荐引用方式
GB/T 7714
Chen, JB,Qin, MZ,Chen, JB , Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China.. A multisymplectic variational integrator for the nonlinear Schrodinger equation[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,2002,18(4):523-536.
APA Chen, JB,Qin, MZ,&Chen, JB , Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China..(2002).A multisymplectic variational integrator for the nonlinear Schrodinger equation.NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,18(4),523-536.
MLA Chen, JB,et al."A multisymplectic variational integrator for the nonlinear Schrodinger equation".NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 18.4(2002):523-536.

入库方式: OAI收割

来源:理论物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。