Mean field theory on the incommensurate ground state of the zigzag spin chain
文献类型:期刊论文
作者 | Sun, LQ; Dai, JH; Qin, SJ![]() |
刊名 | PHYSICS LETTERS A
![]() |
出版日期 | 2002 |
卷号 | 294期号:40972页码:239-244 |
关键词 | Quantum Renormalization-groups Nearest-neighbor Interactions Magnetic-properties Heisenberg Dimerization Cs2cucl4 Ladder |
ISSN号 | 0375-9601 |
英文摘要 | We give a mean field treatment of the incommensurate phase of the zigzag spin-1/2 Heisenberg chain containing both the nearest neighbour coupling J(1) and the next nearest neighbour antiferromagnetic coupling J(2). By use of Jordan-Wigner transformation, the zigzag spin chain is mapped into an interacting spinless fermionic system with two pairs of Fermi points. The incommensurate ground state commences when one more Fermi sea begins to be filled. The mean field theory predicts a new critical point in the ferromagnetic region x(c) = -2(pi + 1)1(pi - 1) such that the system is incommensurate in region x(c) < J(1)/J(2) < 2. We conjecture that the ground state in the region x(c) > J(1)/J(2) > -4 has a nonzero total spin magnitude instead of four Fermi points. (C) 2002 Elsevier Science B.V. All rights reserved. |
学科主题 | Physics |
URL标识 | 查看原文 |
WOS记录号 | WOS:000174138100019 |
公开日期 | 2012-08-29 |
源URL | [http://ir.itp.ac.cn/handle/311006/13592] ![]() |
专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
通讯作者 | Sun, LQ , Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China. |
推荐引用方式 GB/T 7714 | Sun, LQ,Dai, JH,Qin, SJ,et al. Mean field theory on the incommensurate ground state of the zigzag spin chain[J]. PHYSICS LETTERS A,2002,294(40972):239-244. |
APA | Sun, LQ,Dai, JH,Qin, SJ,Zhang, J,&Sun, LQ , Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China..(2002).Mean field theory on the incommensurate ground state of the zigzag spin chain.PHYSICS LETTERS A,294(40972),239-244. |
MLA | Sun, LQ,et al."Mean field theory on the incommensurate ground state of the zigzag spin chain".PHYSICS LETTERS A 294.40972(2002):239-244. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。