A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schrodinger equation
文献类型:期刊论文
作者 | Zhao, D; Luo, HG; Wang, SJ; Wei, Z; Zhao, D , Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China. |
刊名 | CHAOS SOLITONS & FRACTALS
![]() |
出版日期 | 2005 |
卷号 | 24期号:2页码:533-547 |
关键词 | Solitary-wave Solutions Ordinary Differential-equations Linear Evolution-equations Systems |
ISSN号 | 0960-0779 |
英文摘要 | We suggest a direct truncation technique for finding exact solutions of nonlinear differential equation, this method is based on the WTC test. As an application, abundant new exact stationary solutions of the one-dimensional higher-order nonlinear Schrodinger equation are obtained. These solutions include bright, dark, kink or anti-kink solitary wave solutions, which are dependent of the model and free parameters in the solutions. Algebraic solitary-like solution and new periodic solutions are also obtained. An interesting fact is that some solitary solutions can convert into the periodic solutions and vice versa when the free parameters are changed. (C) 2004 Elsevier Ltd. All rights reserved. |
学科主题 | Physics |
URL标识 | 查看原文 |
WOS记录号 | WOS:000226855200014 |
公开日期 | 2012-08-30 |
源URL | [http://ir.itp.ac.cn/handle/311006/13855] ![]() |
专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
通讯作者 | Zhao, D , Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China. |
推荐引用方式 GB/T 7714 | Zhao, D,Luo, HG,Wang, SJ,et al. A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schrodinger equation[J]. CHAOS SOLITONS & FRACTALS,2005,24(2):533-547. |
APA | Zhao, D,Luo, HG,Wang, SJ,Wei, Z,&Zhao, D , Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China..(2005).A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schrodinger equation.CHAOS SOLITONS & FRACTALS,24(2),533-547. |
MLA | Zhao, D,et al."A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schrodinger equation".CHAOS SOLITONS & FRACTALS 24.2(2005):533-547. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。