Four-Loop Nonplanar Cusp Anomalous Dimension in N=4 Supersymmetric Yang-Mills Theory
文献类型:期刊论文
作者 | Yang, G (reprint author), Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China.; Yang, G![]() |
刊名 | PHYSICAL REVIEW LETTERS
![]() |
出版日期 | 2017 |
卷号 | 119期号:20页码:201601 |
DOI | http://dx.doi.org/10.1103/PhysRevLett.119.201601 |
英文摘要 | The lightlike cusp anomalous dimension is a universal function that controls infrared divergences in quite general gauge theories. In the maximally supersymmetric Yang-Mills theory this function is fixed fully by integrability to the three-loop order. At four loops a nonplanar correction appears which we obtain for the first time from a numerical computation of the Sudakov form factor. Key ingredients are widely applicable methods to control the number-theoretic aspects of the appearing integrals. Our result shows explicitly that quadratic Casimir scaling breaks down at four loops. |
学科主题 | Physics |
语种 | 英语 |
源URL | [http://ir.itp.ac.cn/handle/311006/21934] ![]() |
专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
通讯作者 | Yang, G (reprint author), Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China.; Boels, RH (reprint author), Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, D-22761 Hamburg, Germany.; Huber, T (reprint author), Univ Siegen, Nat Wissensch Tech Fak, Walter Flex Str 3, D-57068 Siegen, Germany. |
推荐引用方式 GB/T 7714 | Yang, G ,Yang, G,Boels, RH ,et al. Four-Loop Nonplanar Cusp Anomalous Dimension in N=4 Supersymmetric Yang-Mills Theory[J]. PHYSICAL REVIEW LETTERS,2017,119(20):201601. |
APA | Yang, G ,Yang, G,Boels, RH ,Boels, RH,Huber, T ,&Huber, T.(2017).Four-Loop Nonplanar Cusp Anomalous Dimension in N=4 Supersymmetric Yang-Mills Theory.PHYSICAL REVIEW LETTERS,119(20),201601. |
MLA | Yang, G ,et al."Four-Loop Nonplanar Cusp Anomalous Dimension in N=4 Supersymmetric Yang-Mills Theory".PHYSICAL REVIEW LETTERS 119.20(2017):201601. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。