中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Exact solution of the two-axis countertwisting Hamiltonian

文献类型:期刊论文

作者Pan, F; Zhang, YZ; Draayer, JP; Zhang, YZ (reprint author), Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia.
刊名ANNALS OF PHYSICS
出版日期2017
卷号376页码:182-193
关键词Exactly Solvable Models Two-axis Countertwisting Interactions Bethe Ansatz
DOIhttp://dx.doi.org/10.1016/j.aop.2016.11.019
英文摘要It is shown that the two-axis countertwisting Hamiltonian is exactly solvable when the quantum number of the total angular momentum of the system is an integer after the Jordan-Schwinger (differential) boson realization of the SU(2) algebra. Algebraic Bethe ansatz is used to get the exact solution with the help of the SU(1,1) algebraic structure, from which a set of Bethe ansatz equations of the problem is derived. It is shown that solutions of the Bethe ansatz equations can be obtained as zeros of the Heine Stieltjes polynomials. The total number of the four sets of the zeros equals exactly 2J + 1 for a given integer angular momentum quantum number J, which proves the completeness of the solutions. It is also shown that double degeneracy in level energies may also occur in the J -> infinity limit for integer J case except a unique non-degenerate level with zero excitation energy. (C) 2016 Elsevier Inc. All rights reserved.
学科主题Physics
语种英语
源URL[http://ir.itp.ac.cn/handle/311006/22167]  
专题理论物理研究所_理论物理所1978-2010年知识产出
通讯作者Zhang, YZ (reprint author), Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia.
推荐引用方式
GB/T 7714
Pan, F,Zhang, YZ,Draayer, JP,et al. Exact solution of the two-axis countertwisting Hamiltonian[J]. ANNALS OF PHYSICS,2017,376:182-193.
APA Pan, F,Zhang, YZ,Draayer, JP,&Zhang, YZ .(2017).Exact solution of the two-axis countertwisting Hamiltonian.ANNALS OF PHYSICS,376,182-193.
MLA Pan, F,et al."Exact solution of the two-axis countertwisting Hamiltonian".ANNALS OF PHYSICS 376(2017):182-193.

入库方式: OAI收割

来源:理论物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。