中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells

文献类型:期刊论文

作者Wang HL(王会亮); Wang, HL; Wang B(汪冰); Wang M(王萌); Kui RX(奎热西); Feng WY(丰伟悦); Li, M; Wang, B; Wang, M; Kurash, I
刊名ANALYTICAL AND BIOANALYTICAL CHEMISTRY
出版日期2016
卷号408期号:20页码:5479-5488
关键词Fe3O4 nanoparticle Rapid capture Intracellular nitric oxide detection
DOI10.1007/s00216-016-9646-1
通讯作者汪冰
文献子类期刊论文
英文摘要Direct and real-time measurement of nitric oxide (NO) in biological media is very difficult due to its transient nature. Fe3O4 nanoparticles (nanoFe(3)O(4)) because of their unique catalytic activities have attracted much attention as catalysts in a variety of organic and inorganic reactions. In this work, we have developed a magnetic Fe3O4 nanoparticle-based rapid-capture system for real-time detection of cellular NO. The basic principle is that the nanoFe(3)O(4) can catalyze the decomposition of H2O2 in the system to generate superoxide anion (O-2 (center dot-)) and the O-2 (center dot-) can serve as an effective NO center dot trapping agent yielding peroxynitrite oxide anion, ONOO-. Then the concentration of NO in cells can be facilely determined via peroxynitrite-induced luminol chemiluminescence. The linear range of the method is from 10(-4) to 10(-8) mol/L, and the detection of limit (3 sigma, n = 11) is as low as 3.16 x 10(-9) mol/L. By using this method, the NO concentration in 0.1 and 0.5 mg/L LPS-stimulated BV2 cells was measured as 4.9 and 11.3 mu M, respectively. Surface measurements by synchrotron X-ray photoelectron spectroscopy (SRXPS) and scanning transmission X-ray microscopy (STXM) demonstrate the catalytic mechanism of the nanoFe(3)O(4)-based system is that the significantly excess Fe(II) exists on the surface of nanoFe(3)O(4) and mediates the rapid heterogeneous electron transfer, thus presenting a new Fe2O3 phase on the surface.
WOS关键词PEROXIDASE-LIKE ACTIVITY ; OXIDATIVE STRESS ; LUMINOL CHEMILUMINESCENCE ; HETEROGENEOUS CATALYSIS ; FLUORESCENT-PROBE ; CARBON NANOTUBES ; PEROXYNITRITE ; NANOCATALYSTS ; OXYGEN ; VISUALIZATION
语种英语
WOS记录号WOS:000379624400009
源URL[http://ir.ihep.ac.cn/handle/311005/260261]  
专题高能物理研究所_多学科研究中心
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
Wang HL,Wang, HL,Wang B,et al. Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells[J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY,2016,408(20):5479-5488.
APA 王会亮.,Wang, HL.,汪冰.,王萌.,奎热西.,...&Feng, WY.(2016).Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells.ANALYTICAL AND BIOANALYTICAL CHEMISTRY,408(20),5479-5488.
MLA 王会亮,et al."Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells".ANALYTICAL AND BIOANALYTICAL CHEMISTRY 408.20(2016):5479-5488.

入库方式: OAI收割

来源:高能物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。