there exists a maximal 3-c.e. enumeration degree
文献类型:期刊论文
作者 | Cooper SB ; Li AS ; Sorbi A ; Yang Y |
刊名 | ISRAEL JOURNAL OF MATHEMATICS
![]() |
出版日期 | 2003 |
卷号 | 137页码:285-320 |
ISSN号 | 0021-2172 |
学科主题 | Mathematics |
收录类别 | SCI |
语种 | 英语 |
公开日期 | 2011-07-29 |
附注 | We construct an incomplete 3-c.e. enumeration degree which is maximal among the n-c.e. enumeration degrees for every n with 3 less than or equal to n less than or equal to omega. Consequently the n-c.e. enumeration degrees are not dense for any such n. We show also that no low n-c.e. e-degree can be maximal among the n-c.e. e-degrees, for 2 less than or equal to n less than or equal to omega. |
源URL | [http://124.16.136.157/handle/311060/13184] ![]() |
专题 | 软件研究所_软件所图书馆_期刊论文 |
推荐引用方式 GB/T 7714 | Cooper SB,Li AS,Sorbi A,et al. there exists a maximal 3-c.e. enumeration degree[J]. ISRAEL JOURNAL OF MATHEMATICS,2003,137:285-320. |
APA | Cooper SB,Li AS,Sorbi A,&Yang Y.(2003).there exists a maximal 3-c.e. enumeration degree.ISRAEL JOURNAL OF MATHEMATICS,137,285-320. |
MLA | Cooper SB,et al."there exists a maximal 3-c.e. enumeration degree".ISRAEL JOURNAL OF MATHEMATICS 137(2003):285-320. |
入库方式: OAI收割
来源:软件研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。