linear complexity of pseudorandom sequences generated by fermat quotients and their generalizations
文献类型:期刊论文
作者 | Du Xiaoni ; Klapper Andrew ; Chen Zhixiong |
刊名 | Information Processing Letters
![]() |
出版日期 | 2012 |
卷号 | 112期号:6页码:233-237 |
ISSN号 | 200190 |
英文摘要 | We use polynomial quotients modulo an odd prime p, which are generalized from the Fermat quotients, to define two families of d(≥2)-ary sequences of period p2. If d is a primitive element modulo p2, we determine the minimal characteristic polynomials of the sequences and hence their linear complexities, which depend on whether p 1 or 3 (mod 4). Moreover, we generalize the result to the polynomial quotients modulo a power of p. © 2011 Elsevier B.V. All rights reserved. |
收录类别 | EI |
语种 | 英语 |
WOS记录号 | WOS:000300811700005 |
公开日期 | 2012-11-12 |
源URL | [http://ir.iscas.ac.cn/handle/311060/14744] ![]() |
专题 | 软件研究所_软件所图书馆_期刊论文 |
推荐引用方式 GB/T 7714 | Du Xiaoni,Klapper Andrew,Chen Zhixiong. linear complexity of pseudorandom sequences generated by fermat quotients and their generalizations[J]. Information Processing Letters,2012,112(6):233-237. |
APA | Du Xiaoni,Klapper Andrew,&Chen Zhixiong.(2012).linear complexity of pseudorandom sequences generated by fermat quotients and their generalizations.Information Processing Letters,112(6),233-237. |
MLA | Du Xiaoni,et al."linear complexity of pseudorandom sequences generated by fermat quotients and their generalizations".Information Processing Letters 112.6(2012):233-237. |
入库方式: OAI收割
来源:软件研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。