中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
New schemes with fractal error compensation for PDE eigenvalue computations

文献类型:期刊论文

作者Sun JiaChang
刊名SCIENCE CHINA-MATHEMATICS
出版日期2014
卷号57期号:2页码:221-244
关键词PDE eigenvalues computation generalized matrix eigen-problem discrete Rayleigh quotient
ISSN号1674-7283
中文摘要With an error compensation term in the fractal Rayleigh quotient of PDE eigen-problems, we propose a new scheme by perturbing the mass matrix M (h) to , where K (h) is the corresponding stiff matrix of a 2m - 1 degree conforming finite element with mesh size h for a 2m-order self-adjoint PDE, and the constant C exists in the priority error estimation lambda (j) (h) - lambda (j) similar to Ch (2m) lambda (j) (2) . In particular, for Laplace eigenproblems over regular domains in uniform mesh, e.g., cube, equilateral triangle and regular hexagon, etc., we find the constant and show that in this case the computation accuracy can raise two orders, i.e., from lambda (j) (h) - lambda (j) = O(h (2)) to O(h (4)). Some numerical tests in 2-D and 3-D are given to verify the above arguments.
英文摘要With an error compensation term in the fractal Rayleigh quotient of PDE eigen-problems, we propose a new scheme by perturbing the mass matrix M (h) to , where K (h) is the corresponding stiff matrix of a 2m - 1 degree conforming finite element with mesh size h for a 2m-order self-adjoint PDE, and the constant C exists in the priority error estimation lambda (j) (h) - lambda (j) similar to Ch (2m) lambda (j) (2) . In particular, for Laplace eigenproblems over regular domains in uniform mesh, e.g., cube, equilateral triangle and regular hexagon, etc., we find the constant and show that in this case the computation accuracy can raise two orders, i.e., from lambda (j) (h) - lambda (j) = O(h (2)) to O(h (4)). Some numerical tests in 2-D and 3-D are given to verify the above arguments.
收录类别SCI
语种英语
WOS记录号WOS:000329791900001
公开日期2014-12-16
源URL[http://ir.iscas.ac.cn/handle/311060/16701]  
专题软件研究所_软件所图书馆_期刊论文
推荐引用方式
GB/T 7714
Sun JiaChang. New schemes with fractal error compensation for PDE eigenvalue computations[J]. SCIENCE CHINA-MATHEMATICS,2014,57(2):221-244.
APA Sun JiaChang.(2014).New schemes with fractal error compensation for PDE eigenvalue computations.SCIENCE CHINA-MATHEMATICS,57(2),221-244.
MLA Sun JiaChang."New schemes with fractal error compensation for PDE eigenvalue computations".SCIENCE CHINA-MATHEMATICS 57.2(2014):221-244.

入库方式: OAI收割

来源:软件研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。